OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1385–1394

A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array

Ethan Schonbrun, Paul E. Steinvurzel, and Kenneth B. Crozier  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1385-1394 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an opto-fluidic detection system based on an array of astigmatic diffractive microlenses integrated into a microfluidic flow focus device. Each astigmatic microlens produces a line excitation across the channel and collects fluorescence emission from the linear detection regions. The linear excitation spot results in uniform excitation across the channel and high time resolution in the direction of the flow. Collected fluorescence from each integrated microlens is relayed to a sub-region on a fast CMOS camera. By analyzing the signal from individual microlenses, we demonstrate counting and resolution of 500 nm and 1.1 μm beads at rates of up to 8,300 per second at multiple locations. In addition, a cross-correlation analysis of the signals from different microlenses yields the velocity dispersion of beads traveling through the channel at peak speeds as high as 560 mm/s. Arrays of specifically designed diffractive optics promise to increase the resolution and functionality of opto-fluidic analysis such as flow cytometry and fluorescence cross-correlation spectroscopy.

© 2011 OSA

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(050.1965) Diffraction and gratings : Diffractive lenses

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 3, 2010
Revised Manuscript: December 15, 2010
Manuscript Accepted: December 22, 2010
Published: January 12, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Ethan Schonbrun, Paul E. Steinvurzel, and Kenneth B. Crozier, "A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array," Opt. Express 19, 1385-1394 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Shapiro, Practical Flow Cytometry, 3rd ed. (Wiley-Liss, 1995).
  2. D. A. Ateya, J. S. Erickson, P. B. Howell, L. R. Hilliard, J. P. Golden, and F. S. Ligler, “The good, the bad, and the tiny: a review of microflow cytometry,” Anal. Bioanal. Chem. 391(5), 1485–1498 (2008). [CrossRef] [PubMed]
  3. D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Microchip flow cytometry using electrokinetic focusing,” Anal. Chem. 73, 5334–5338 (2001).
  4. C. Simonnet and A. Groisman, “High-throughput and high-resolution flow cytometry in molded microfluidic devices,” Anal. Chem. 78(16), 5653–5663 (2006). [CrossRef] [PubMed]
  5. J. F. Dishinger and R. T. Kennedy, “Multiplexed detection and applications for separations on parallel microchips,” Electrophoresis 29(16), 3296–3305 (2008). [CrossRef] [PubMed]
  6. E. Schonbrun, A. R. Abate, P. E. Steinvurzel, D. A. Weitz, and K. B. Crozier, “High-throughput fluorescence detection using an integrated zone-plate array,” Lab Chip 10(7), 852–856 (2010). [CrossRef] [PubMed]
  7. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001). [CrossRef] [PubMed]
  8. Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, “PDMS-based optofluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes,” Sens. Act. B 98(2–3), 356–367 (2004). [CrossRef]
  9. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, “Multi-wavelength microflow cytometer using groove-generated sheath flow,” Lab Chip 9(13), 1942–1950 (2009). [CrossRef] [PubMed]
  10. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3, 40–45 (2003). [CrossRef]
  11. J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sens. Act. B 99, 615–622 (2004). [CrossRef]
  12. K. J. Liu and T. H. Wang, “Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping,” Biophys. J. 95(6), 2964–2975 (2008). [CrossRef] [PubMed]
  13. H. Farhoosh, M. R. Feldman, S. H. Lee, C. C. Guest, Y. Fainman, and R. Eschbach, “Comparison of binary encoding schemes for electron-beam fabrication of computer generated holograms,” Appl. Opt. 26(20), 4361–4372 (1987). [CrossRef] [PubMed]
  14. H. J. Tiziani, R. Achi, R. N. Kramer, and L. Wiegers, “Theoretical analysis of confocal microscopy with microlenses,” Appl. Opt. 35(1), 120–125 (1996). [CrossRef] [PubMed]
  15. D. Psaltis, E. G. Paek, and S. S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” Opt. Eng. 23, 698 (1984).
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  17. B. Bilenberg, S. Jacobsen, M. S. Schmidt, L. H. D. Skjolding, P. Shi, P. Bøggild, J. O. Tegenfeldt, and A. Kristensen, “High resolution 100 kV electron beam lithography in SU8,” Micro. Eng. 83(4–9), 1609–1612 (2006). [CrossRef]
  18. E. Schonbrun, W. N. Ye, and K. B. Crozier, “Scanning microscopy using a short-focal-length Fresnel zone plate,” Opt. Lett. 34(14), 2228–2230 (2009). [CrossRef] [PubMed]
  19. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle imaging velocimetry system for microfludics,” Exp. Fluids 25(4), 316–319 (1998). [CrossRef]
  20. M. Gösch, H. Blom, J. Holm, T. Heino, and R. Rigler, “Hydrodynamic flow profiling in microchannel structures by single molecule fluorescence correlation spectroscopy,” Anal. Chem. 72(14), 3260–3265 (2000). [CrossRef] [PubMed]
  21. M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999). [CrossRef] [PubMed]
  22. D. Di Carlo, “Inertial microfluidics,” Lab Chip 9(21), 3038–3046 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited