OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1484–1492

Experimental realization of a low-noise heralded single-photon source

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. Ruo Berchera  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1484-1492 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.

© 2011 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: August 13, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: October 22, 2010
Published: January 13, 2011

G. Brida, I. P. Degiovanni, M. Genovese, A. Migdall, F. Piacentini, S. V. Polyakov, and I. Ruo Berchera, "Experimental realization of a low-noise heralded single-photon source," Opt. Express 19, 1484-1492 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://www.quantumcandela.net.
  2. G. Brida, M. Genovese, and M. Gramegna, “Twin-Photon techniques for photo-detector calibration,” Laser Phys. Lett. 3, 115–123 (2006). [CrossRef]
  3. S. V. Polyakov, and A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56(9), 10451052 (2009) (and refs. therein.). [CrossRef]
  4. R. Thew, and N. Gisin, “Quantum communication,” Nat. Photonics 1, 165171 (2007) (and refs. therein.).
  5. J. L. O’Brien, A. Furusawa, and J. Vickovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009) (and refs. therein.). [CrossRef]
  6. M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. 413, 319–396 (2005) (and refs. therein.). [CrossRef]
  7. G. Brida, I. P. Degiovanni, M. Genovese, V. Schettini, S. Polyakov, and A. Migdall, “Experimental test of nonclassicality for a single particle,” Opt. Express 16, 11750–11758 (2008). [CrossRef] [PubMed]
  8. G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V. Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, “Improved implementation of the AlickiVan Ryn nonclassicality test for a single particle using Si detectors,” Phys. Rev. A 79, 044102 (2009). [CrossRef]
  9. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986). [CrossRef]
  10. D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 10561062 (1977) (Sov. J. Quantum Electron. 7, 591595 (1977)).
  11. C. K. Hong, and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986). [CrossRef] [PubMed]
  12. A. B. U‘Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93, 093601 (2004). [CrossRef]
  13. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, “Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion,” Opt. Express 13, 6709–6722 (2005). [CrossRef] [PubMed]
  14. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004). [CrossRef]
  15. . A. B. U’Ren, C. Silberhorn, J. L. Ball, K . Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).
  16. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, New York, 1995).
  17. J. Fan, and A. Migdall, “A broadband high spectral brightness fiber-based two-photon source,” Opt. Express 15, 2915–2920 (2007). [CrossRef] [PubMed]
  18. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs,” Phys. Rev. A 76, 2043836 (2007). [CrossRef]
  19. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarizationentangled photon pairs,” Opt. Express 15, 18339–18344 (2007). [CrossRef] [PubMed]
  20. J. Fulconis, and O. Alibart, J. L. OBrien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007). [CrossRef] [PubMed]
  21. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001). [CrossRef]
  22. F. A. Bovino, P. Varisco, M. A. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective Fibercoupling of Entangled Photons for Quantum Communication,” Opt. Commun. 227, 343–348 (2003). [CrossRef]
  23. S. Castelletto, I. P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” N. J. Phys. 6, 87 (2004). [CrossRef]
  24. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef] [PubMed]
  25. T. Horikiri, Y. Takeno, A. Yabushita, and T. Kobayashi, “Photon-number-resolved heralded-photon source for improved quantum key distribution,” Phys. Rev. A 76, 012306 (2007). [CrossRef]
  26. A. Migdall, “Correlated-Photon Metrology Without Absolute Standards,” Phys. Today 52, 41–46 (1999). [CrossRef]
  27. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring Single and Multiphoton Probabilities of a Single Photon On-Demand Source,” Phys. Rev. A 66, 053805 (2002). [CrossRef]
  28. E. Jeffrey, N. A. Peters, and P. G. Kwiat, “Towards a periodic deterministic source of arbitrary single-photon states,” N. J. Phys. 6, 100 (2004). [CrossRef]
  29. S. Takeuchi, R. Okamoto, and K. Sasaki, “High-yield single-photon source using gated spontaneous parametric downconversion,” Appl. Opt. 43, 57085711 (2004). [CrossRef] [PubMed]
  30. M. Oxborrow, and A. C. Sinclair, “Single-photon sources,” Contemp. Phys. 46, 173–206 (2005). [CrossRef]
  31. S. Scheel, “Single-photon sources- an introduction,” J. Mod. Opt. 56, 141–160 (2009). [CrossRef]
  32. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 11, 173–179 (1986). [CrossRef]
  33. G. Brida, M. Genovese, M. Gramegna, and E. Predazzi, “A conclusive experiment to throw more light on light,” Phys. Lett. A 328, 313–318 (2004). [CrossRef]
  34. J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett. 82, 3596 (2003). [CrossRef]
  35. A. Bennett, D. Unitt, P. Atkinson, D. Ritchie, and A. Shields, “High performance single photon sources from photolithographically defined pillar microcavities,” Opt. Express 13, 50–55 (2005). [CrossRef] [PubMed]
  36. M. Keller, B. Lange, K. Hayasaka, and W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004). [CrossRef] [PubMed]
  37. http://www.eospace.com/Switches.htm
  38. Certain commercial equipment, instruments or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  39. All the uncertainties and the error bars correspond to the coverage factor k = 1 except for the 95% confidence bands of Fig. 3.
  40. R. H. Hadfield, “Single-photon detectors for optical quantum information,” Nat. Photonics 3, 696–705 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited