OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1516–1527

Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses

M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1516-1527 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The majority of the applications of ultrashort laser pulses require a control of its spectral bandwidth. In this paper we show the capability of volume phase holographic gratings recorded in photopolymerizable glasses for spectral pulse reshaping of ultrashort laser pulses originated in an Amplified Ti: Sapphire laser system and its second harmonic. Gratings with high laser induce damage threshold (LIDT) allowing wide spectral bandwidth operability satisfy these demands. We have performed LIDT testing in the photopolymerizable glass showing that the sample remains unaltered after more than 10 million pulses with 0,75 TW/cm2 at 1 KHz repetition rate. Furthermore, it has been developed a theoretical model, as an extension of the Kogelnik’s theory, providing key gratings design for bandwidth operability. The main features of the diffracted beams are in agreement with the model, showing that non-linear effects are negligible in this material up to the fluence threshold for laser induced damage. The high versatility of the grating design along with the excellent LIDT indicates that this material is a promising candidate for ultrashort laser pulses manipulations.

© 2011 OSA

OCIS Codes
(090.0090) Holography : Holography
(090.7330) Holography : Volume gratings

ToC Category:

Original Manuscript: October 11, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 6, 2010
Published: January 13, 2011

M. P. Hernández-Garay, O. Martínez-Matos, J. G. Izquierdo, M. L. Calvo, P. Vaveliuk, P. Cheben, and L. Bañares, "Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses," Opt. Express 19, 1516-1527 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, eds., Ultrafast Lasers Technology and Applications, (Marcel Dekker Inc. New York, USA, 2003).
  2. C. E. Webb, and J. D. C. Jones, Handbook of Laser Technology and Applications (Institute of Physic publishing, USA, 2004), Chap. 2.3.5. See also: Handbook of Optics (McGraw-Hill Co. Third Ed., Vol. II, 2010), Chap. 20.
  3. F. C. De Schryver, S. De Feyter, and G. Schweitzer, eds., Femtochemistry, (Wiley-VCH GmbH, Weinheim, Germany, 2001).
  4. H. Ahmed, Zewail, Physical Biology from Atoms to Medicine (Imperial College Press, London, UK, 2008).
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  6. M. Andrew, Weiner, Ultrafast Optics (John Wiley & Sons, Ltd, New Jersey, USA, 2009).
  7. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29(16), 1942–1944 (2004). [CrossRef] [PubMed]
  8. O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution,” Opt. Lett. 35(5), 652–654 (2010). [CrossRef] [PubMed]
  9. O. V. Andreeva, V. G. Bespalov, V. N. Vasil’ev, A. A. Gorodetskiî, A. P. Kushnarenko, G. V. Lukomskiî, and A. A. Paramonov, “Investigation of the spectral selectivity of volume holograms with femtosecond pulsed radiation,” Opt. Spect. 96(2), 157–162 (2004). [CrossRef]
  10. W. Wilson, A. Hoskins, M. Ayres, A. Hill, and K. Curtis, Introduction to Holographic Data Recording, in Holographic Data Storage: From Theory to Practical Systems, K. Curtis, L. Dhar, A. Hill, W. Wilson and M. Ayres, eds., (John Wiley & Sons, Ltd, Chichester, UK., 2010).
  11. A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009). [CrossRef] [PubMed]
  12. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef]
  13. R. Kashyap, Fiber Bragg Gratings (Elsevier, USA, 1999).
  14. P. Rambo, J. Schwarz, and I. Smith, “Development of a mirror backed volume phase grating with potential for large aperture and high damage threshold,” Opt. Commun. 260(2), 403–414 (2006). [CrossRef]
  15. H. Li, H. Xiong, and Y. Tang, “Study on the laser-induced damage threshold of sol-gel ZO2-PVP coating,” Chin. Opt. Lett. 8(2), 241–243 (2010). [CrossRef]
  16. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  17. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995). [CrossRef] [PubMed]
  18. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14(5), 1124–1136 (1997). [CrossRef]
  19. F. del Monte, O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “A Volume Holographic Sol-Gel Material with Large Enhancement of Dynamic Range by Incorporation of High Refractive Index Species,” Adv. Mater. 18(15), 2014–2017 (2006). [CrossRef]
  20. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78(11), 1490–1492 (2001). [CrossRef]
  21. O. Martínez-Matos, M. L. Calvo, J. A. Rodrigo, P. Cheben, and F. del Monte, “Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species,” Appl. Phys. Lett. 91(14), 1411151–1411153 (2007). [CrossRef]
  22. M. L. Calvo and P. Cheben, “Photopolymerizable sol–gel nanocomposites for holographic recording,” J. Opt. A, Pure Appl. Opt. 11(2), 1–11 (2009). [CrossRef]
  23. O. Martínez-Matos, J. A. Rodrigo, M. L. Calvo, and P. Cheben, “Polarization and phase-shift properties of high spatial frequency holographic gratings in a photopolymerizable glass,” Opt. Lett. 34(4), 485–487 (2009). [CrossRef] [PubMed]
  24. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  25. M. G. Moharam and L. Young, “Criterion for Bragg and Raman-Nath diffraction regimes,” Appl. Opt. 17(11), 1757–1759 (1978). [CrossRef] [PubMed]
  26. E. A. Bahaa Saleh and M. C. Teich, Fundamental of Photonics, (John Wiley & Sons eds., USA, 2007), Chap.22.
  27. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001). [CrossRef]
  28. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited