OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1539–1562

Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances

Song-Liang Chua, Yidong Chong, A. Douglas Stone, Marin Soljačić, and Jorge Bravo-Abad  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1539-1562 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical analysis of lasing action in photonic crystal surface-emitting lasers (PCSELs). The semiclassical laser equations for such structures are simulated with three different theoretical techniques: exact finite-difference time-domain calculations, an steady-state ab-initio laser theory and a semi-analytical coupled-mode formalism. Our simulations show that, for an exemplary four-level gain model, the excitation of dark Fano resonances featuring arbitrarily large quality factors can lead to a significant reduction of the lasing threshold of PCSELs with respect to conventional vertical-cavity surface-emitting lasers. Our calculations also suggest that at the onset of lasing action, most of the laser power generated by finite-size PCSELs is emitted in the photonic crystal plane rather than the vertical direction. In addition to their fundamental interest, these findings may affect further engineering of active devices based on photonic crystal slabs.

© 2011 OSA

OCIS Codes
(250.7270) Optoelectronics : Vertical emitting lasers
(270.3430) Quantum optics : Laser theory
(230.5298) Optical devices : Photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: October 20, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 10, 2010
Published: January 13, 2011

Song-Liang Chua, Yidong Chong, A. Douglas Stone, Marin Soljačić, and Jorge Bravo-Abad, "Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances," Opt. Express 19, 1539-1562 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. S. Haroche, D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989). [CrossRef]
  4. Y. Yamamoto (ed.), Coherence, Amplification, and Quantum effects in Semiconductor Lasers (John Wiley & Sons, 1991), and references therein.
  5. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992). [CrossRef] [PubMed]
  6. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994). [CrossRef]
  7. D. S. Wiersma, A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  9. X. Jiang, C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000). [CrossRef] [PubMed]
  10. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001). [CrossRef] [PubMed]
  11. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001). [CrossRef] [PubMed]
  12. M. Imada, A. Chutinan, S. Noda, M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002). [CrossRef]
  13. J. C. Johnson, H.- J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002). [CrossRef]
  14. D. J. Bergman, M. L. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  15. X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003). [CrossRef] [PubMed]
  16. H.- G. Park, S.- H. Kim, S.- H. Kwon, Y. -G. Ju, J.- K. Yang, J.- H. Baek, S. -B. Kim, Y.- H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef] [PubMed]
  17. T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3889–3891 (2004). [CrossRef]
  18. H. Y. Ryu, M. Notomi, E. Kuramochi, T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004). [CrossRef]
  19. P. Bermel, E. Lidorikis, Y. Fink, J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006). [CrossRef]
  20. C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A. D. Stone, J. Faist, D. Sivco, A. Cho, “High power directional emission from lasers with chaotic resonators,” Science 280, 1556–64 (1998). [CrossRef] [PubMed]
  21. H. E. Türeci, A. D. Stone, B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006). [CrossRef]
  22. B. Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Cioccio, J. Fedeli, “Surface-emitting micro-laser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006). [CrossRef]
  23. H. Altug, D. Englund, J. Vuckovic, “Ultra-fast photonic-crystal nanolasers,” Nat. Phys. 2, 485–488 (2006). [CrossRef]
  24. M. T. Hill, Y. -S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. -H. Kwon, Y.- H. Lee, R. Notzel, M. K. Smit, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  25. H. E. Türeci, L. Ge, S. Rotter, A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008). [CrossRef] [PubMed]
  26. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, S. Noda, “GaN photonic crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008). [CrossRef]
  27. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008). [CrossRef]
  28. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  29. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  30. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629 (2009). [CrossRef] [PubMed]
  31. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010). [CrossRef]
  32. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  33. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).
  34. A. S. Nagra, R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998). [CrossRef]
  35. S. Noda, M. Fujita, T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007). [CrossRef]
  36. A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001). [CrossRef]
  37. S. Fan, J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  38. T. Ochiai, K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107 (2001). [CrossRef]
  39. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, New York, NY, 2007).
  40. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  41. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 81, 687–702 (2010). [CrossRef]
  42. Li Ge, D. Y. Chong, A. D. Stone, “Steady-state Ab Initio Laser Theory: Generalizations and Analytic Results,” arxiv:1008.0628.
  43. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  44. L. Ge, “Steady-state Ab Initio Laser Theory and its Applications in Random and Complex Media,” Yale PhD thesis, 2010; also A. Cerjan, Y.-D. Chong, L. Ge and A. D. Stone, unpublished.
  45. L. Ge, R. Tandy, A. D. Stone, H. E. Türeci, “Quantitative Verification of Ab Initio Self-Consistent Laser Theory,” Opt. Express 16, 16895 (2008). [CrossRef] [PubMed]
  46. H. E. Li, K. Iga, Vertical-cavity surface-emitting laser devices (Springer, 2003).
  47. A. E. Siegman, Lasers (Univ. Science Books, 1986).
  48. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  49. S. D. Glauber, “An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  50. M. Soljac̆ić, M. Ibanescu, S. G. Johnson, Y. Fink, J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601 (2002). [CrossRef]
  51. W. Suh, Z. Wang, S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004). [CrossRef]
  52. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, M. Soljac̆ić, “Enhanced non-linear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007). [CrossRef] [PubMed]
  53. R. E. Hamam, M. Ibanescu, E. J. Reed, P. Bermel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, M. Soljac̆ić, “Purcell effect in nonlinear photonic structures: A coupled mode theory analysis,” Opt. Express 16, 12523–12537 (2008). [CrossRef] [PubMed]
  54. J. Bravo-Abad, E. P. Ippen, M. Soljac̆ić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94, 241103 (2009). [CrossRef]
  55. H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljac̆ić, S. G. Johnson, “Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities,” Phys. Rev. A 79, 013812 (2009). [CrossRef]
  56. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, M. Soljac̆ić, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010). [CrossRef]
  57. J. A. Kong, Electromagnetic wave theory (EMW Publishing, 2005).
  58. T. Lu, C. Kao, H. Kuo, G. Huang, S. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited