OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1563–1568

Electrically controllable fishnet metamaterial based on nematic liquid crystal

Fuli Zhang, Weihong Zhang, Qian Zhao, Jingbo Sun, Kepeng Qiu, Ji Zhou, and Didier Lippens  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1563-1568 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A variable index metamaterial is demonstrated by embedding nematic liquid crystal inside fishnet layers’ void at microwave frequencies. With an external electric field, the left handed passband can be reversibly shifted from 9.14 to 8.80 GHz, whereas the upper right handed passband is nearly unchanged. It is shown that during LC molecular reorientation, magnetic resonance is shifted to a lower frequency because of the permittivity increase between fishnet layers, leading to an effective index change of 1.1 within negative index regime.

© 2011 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 17, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 19, 2010
Published: January 13, 2011

Fuli Zhang, Weihong Zhang, Qian Zhao, Jingbo Sun, Kepeng Qiu, Ji Zhou, and Didier Lippens, "Electrically controllable fishnet metamaterial based on nematic liquid crystal," Opt. Express 19, 1563-1568 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  2. I. Gil, J. García-García, J. Bonache, F. Martín, M. Sorolla, and R. Marqués, “Varactor-loaded split ring resonators for tunablenotch filters at microwave frequencies,” Electron. Lett. 40(21), 1347–1348 (2004). [CrossRef]
  3. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, “Tunable split-ring resonators for nonlinear negative-index metamaterials,” Opt. Express 14(20), 9344–9349 (2006). [CrossRef] [PubMed]
  4. H. Chen, B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006). [CrossRef]
  5. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007). [CrossRef] [PubMed]
  6. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterial,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  7. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96(14), 143105 (2010). [CrossRef]
  8. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008). [CrossRef]
  9. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23(3), 498–505 (2006). [CrossRef]
  10. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009). [CrossRef]
  11. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007). [CrossRef]
  12. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92(19), 193104 (2008). [CrossRef]
  13. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31(17), 2592–2594 (2006). [CrossRef] [PubMed]
  14. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express 15(6), 3342–3347 (2007). [CrossRef] [PubMed]
  15. F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009). [CrossRef] [PubMed]
  16. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96(19), 193103 (2010). [CrossRef]
  17. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009). [CrossRef]
  18. C. M. Soukoulis, S. Linden, and M. Wegener, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2007).
  19. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  20. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007). [CrossRef]
  21. J. Carbonell, C. Croënne, F. Garet, E. Lheurette, J. L. Coutaz, and D. Lippens, “Lumped elements circuit of terahertz fishnet-like arrays with composite dispersion,” J. Appl. Phys. 108(1), 014907 (2010). [CrossRef]
  22. A. Mary, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “Theory of negative-refractive-index response of double-fishnet structures,” Phys. Rev. Lett. 101(10), 103902 (2008). [CrossRef] [PubMed]
  23. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  24. K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993). [CrossRef]
  25. F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002). [CrossRef]
  26. C. Weil, St. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003). [CrossRef]
  27. F. Zhang, Q. Zhao, D. P. Gaillot, X. Zhao, and D. Lippens, “Numerical Investigation of Metamaterials Infiltrated by Liquid Crystal,” J. Opt. Soc. Am. B 25(11), 1920 (2008). [CrossRef]
  28. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002). [CrossRef] [PubMed]
  29. C. Croënne, B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, “Bloch impedance in negative index photonic crystals,” Phys. Rev. B 77(12), 125333 (2008). [CrossRef]
  30. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004). [CrossRef] [PubMed]
  31. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited