OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1569–1581

Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia

Boyan Tatarov, Detlef Müller, Dong Ho Shin, Sung Kyun Shin, Ina Mattis, Patric Seifert, Young Min Noh, Y. J. Kim, and Nobuo Sugimoto  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1569-1581 (2011)
http://dx.doi.org/10.1364/OE.19.001569


View Full Text Article

Enhanced HTML    Acrobat PDF (1175 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a novel measurement channel that utilizes Raman scattering from silicon dioxide (SiO2) quartz at an ultraviolet wavelength (361 nm). The excitation of the Raman signals is done at the primary wavelength of 355 nm emitted from a lidar instrument. In combination with Raman signals from scattering from nitrogen molecules, we may infer the mineral-quartz-related backscatter coefficient. This technique thus allows us to identify in a comparably direct way the mineral quartz content in mixed pollution plumes that consist, e.g., of a mix of desert dust and urban pollution. We tested the channel for the complex situation of East Asian pollution. We find good agreement of the inferred mineral-quartz-related backscatter coefficient to results obtained with another mineral quartz channel which was operated at 546 nm (primary emission wavelength at 532 nm), the functionality of which has already been shown for a lidar system in Tsukuba (Japan). The advantage of the novel channel is that it provides a better signal-to-noise ratio because of the shorter measurement wavelength.

© 2011 OSA

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar
(290.5860) Scattering : Scattering, Raman

ToC Category:
Remote Sensing

History
Original Manuscript: November 1, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 20, 2010
Published: January 13, 2011

Citation
Boyan Tatarov, Detlef Müller, Dong Ho Shin, Sung Kyun Shin, Ina Mattis, Patric Seifert, Young Min Noh, Y. J. Kim, and Nobuo Sugimoto, "Lidar measurements of Raman scattering at ultraviolet wavelength from mineral dust over East Asia," Opt. Express 19, 1569-1581 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1569


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, J. Haywood, P. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Lidar and atmospheric aerosol particles,” in Climate Change2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyth, M. Tigner and H. L. Miller eds., (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 996pp). [PubMed]
  2. M. O. Andreae, “Climatic effects of changing atmospheric aerosol levels,” in World Survey of Climatology Vol. 16, A. Henderson-Sellers, ed., (Future Climates of the World, p. 347–398. Elsevier, New York, 1995).
  3. H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation (C. Kluwer Academic Publishers, Dordrecht/Boston/London, 1997) pp. 954.
  4. P. J. DeMott, K. Sassen, M. R. Poellet, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis, "African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30(14), 1732 (2003). [CrossRef]
  5. P. R. Field, O. Möhler, P. Connolly, M. Krämer, R. Cotton, A. J. Heymsfield, H. Saathoff, and M. Schnaiter, “Some ice nucleation characteristics of Asian and Saharan desert dust,” Atmos. Chem. Phys. 6(10), 2991–3006 (2006). [CrossRef]
  6. A. Ansmann, M. Tesche, D. Althausen, D. Müller, P. Seifert, V. Freudenthaler, B. Heese, M. Wiegner, G. Pisani, P. Knippertz, and O. Dubovik, "Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment,” J. Geophys. Res. 113(D4), D04210 (2008). [CrossRef]
  7. A. Ansmann, M. Tesche, P. Seifert, D. Althausen, R. Engelmann, J. Fruntke, U. Wandinger, I. Mattis, and D. Müller, “Evolution of the ice phase in tropical altocumulus: SAMUM lidar observations over Cape Verde,” J. Geophys. Res. 114(D17), D17208 (2009). [CrossRef]
  8. P. Seifert, A. Ansmann, I. Mattis, U. Wandinger, M. Tesche, R. Engelmann, D. Müller, C. Pérez, and K. Haustein, “Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site,” J. Geophys. Res. 115(D20), D20201 (2010). [CrossRef]
  9. Z. Levin, E. Ganor, and V. Gladstein, “The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean,” J. Appl. Meteorol. 35(9), 1511–1523 (1996). [CrossRef]
  10. S. Wurzler, T. G. Reisin, and Z. Levin, “Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions,” J. Geophys. Res. 105(D4), 4501–4512 (2000). [CrossRef]
  11. O. Möhler, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, J. Schneider, S. Walter, V. Ebert, and S. Wagner, “The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols,” Environ. Res. Lett. 3(2), 025007 (2008). [CrossRef]
  12. D. J. Cziczo, K. D. Froyd, S. J. Gallavardin, O. Moehler, S. Benz, H. Saathoff, and D. M. Murphy, “Deactivation of ice nuclei due to atmospherically relevant surface coating,” Environ. Res. Lett. 4(4), 044013 (2009). [CrossRef]
  13. J. Bösenberg and E. Volker, EARLINET: A European Aerosol Research Lidar Network to establish an aerosol climatology, Rep. 348, Max-Planck-Institute, Hamburg, Germany, 2003.
  14. N. Sugimoto, I. Matsui, A. Shimizu, T. Nishizawa, Y. Hara, C. Xie, I. Uno, K. Yumimoto, Z. Wang, and S.-C. Yoon, “Lidar network observations of tropospheric aerosols,” Proc. SPIE 7153, 71530A, 71530A-13 (2008), doi:. [CrossRef]
  15. A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, “Continuous observations of Asian dust and other aerosols by polarization lidar in China and Japan during ACE-Asia,” J. Geophys. Res. 109(D19), S17 (2004). [CrossRef]
  16. T. Murayama, D. Müller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto, “Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo, Japan in spring 2003,” Geophys. Res. Lett. 31(23), L23103 (2004). [CrossRef]
  17. L. Mona, A. Amodeo, M. Pandolfi, and G. Pappalardo, “Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements,” J. Geophys. Res. 111(D16), D16203 (2006). [CrossRef]
  18. J. S. Reid and H. B. Maring, “Foreword to special section on the Puerto Rico Dust Experiment (PRIDE),” J. Geophys. Res. 108(D19), 8585 (2003), doi:. [CrossRef]
  19. D. Tanré, J. Haywood, J. Pelon, J.-F. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. Highwood, and G. Myhre, “Measurements and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE),” J. Geophys. Res. 108(D18), 8574 (2003). [CrossRef]
  20. J. S. Reid, S. J. Piketh, A. L. Walker, R. P. Burger, K. E. Ross, D. L. Westphal, R. T. Bruintjes, B. N. Holben, C. Hsu, T. L. Jensen, R. A. Kahn, A. P. Kuciauskas, A. Al Mandoos, A. Al Mangoosh, S. D. Miller, J. N. Porter, E. A. Reid, and S.-C. Tsay, “An overview of UAE flight operations: Observations of summertime atmospheric thermodynamics and aerosol profiles of the southern Arabian Gulf,” J. Geophys. Res. 113(D14), D14213 (2008). [CrossRef]
  21. J. M. Haywood, J. Pelon, P. Formenti, N. Bharmal, M. Brooks, G. Capes, P. Chazette, C. Chou, S. Christopher, H. Coe, J. Cuesta, Y. Derimian, K. Desboeufs, G. Greed, M. Harrison, B. Heese, E. J. Highwood, B. Johnson, M. Mallet, B. Marticorena, J. Marsham, S. Milton, G. Myhre, S. R. Osborne, D. J. Parker, J.-L. Rajot, M. Schulz, A. Slingo, D. Tanré, and P. Tulet, “Overview of the dust and biomass-burning experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0,” J. Geophys. Res. 113, D00C17 (2008). [CrossRef]
  22. C. L. McConnell, E. J. Highwood, H. Coe, P. Formenti, B. Anderson, S. Osborne, S. Nava, K. Desboeufs, G. Chen, and M. A. Harrison, “Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment,” J. Geophys. Res. 113(D14), D14S05 (2008). [CrossRef]
  23. J.-L. Redelsperger, C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, "African Monsoon Multi-disciplinary Analysis: An international research project and field campaign,” Bull. Am. Meteorol. Soc. 87(12), 1739–1746 (2006). [CrossRef]
  24. “Results of the Saharan Mineral Dust Experiment,” Tellus B Chem. Phys. Meterol. 61, 1–353 (2009).
  25. I. Mattis, D. Müller, A. Ansmann, U. Wandinger, J. Preißler, P. Seifert, and M. Tesche, "Ten years of multiwavelength Raman lidar observations of free-tropospheric aerosol layers over central Europe: Geometrical properties and annual cycle,” J. Geophys. Res. 113(D20), D20202 (2008). [CrossRef]
  26. B. Tatarov, N. Sugimoto, I. Matsui, D.-H. Shin, and D. Mueller, “Multi-channel lidar spectrometer for atmospheric aerosol typing on the basis of chemical signature in Raman spectra”, 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, (ISBN 978–5-94458–109–9), pp.47–50.
  27. B. Tatarov and N. Sugimoto, “Estimation of quartz concentration in the tropospheric mineral aerosols using combined Raman and high-spectral-resolution lidars,” Opt. Lett. 30(24), 3407–3409 (2005). [CrossRef]
  28. D. H. Shin, Y. M. Noh, B. Tatarov, S. K. Shin, Y. J. Kim, and D. Müller, “Multiwavelength Aerosol Raman Lidar for Optical and Microphysical Aerosol Typing over East Asia,” 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, (ISBN 978–5-94458–109–9), pp.239–243.
  29. D. Müller, I. Mattis, B. Tatarov, Y. M. Noh, D. H. Shin, S. K. Shin, K. H. Lee, Y. J. Kim, and N. Sugimoto, “Mineral Quartz concentration measurements of mixed mineral dust/urban haze pollution plumes over Korea with multiwavelength/aerosol/Raman-quartz lidar,” Geophys. Res. Lett. 37(20), L20810 (2010), doi:. [CrossRef]
  30. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15(13), 746–748 (1990). [CrossRef] [PubMed]
  31. P. E. Schoen, and H. Z. Cummins, Absolute cross sections for Raman and Brillouin light scattering in quartz, in Proceedings of Second International Conference on Light Scattering in Solids, M. Balkanski, ed., (Flammarion, Paris, France, 1971) p. 460.
  32. Y. M. Noh, D. Müller, D. H. Shin, H. Lee, J. S. Jung, K. H. Lee, M. Cribb, Z. Li, and Y. J. Kim, “Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea,” Atmos. Environ. 43(4), 879–888 (2009). [CrossRef]
  33. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38(12), 2346–2357 (1999). [CrossRef]
  34. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, U. Wandinger, and D. N. Whiteman, “Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding,” Appl. Opt. 41(18), 3685–3699 (2002). [CrossRef] [PubMed]
  35. C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22(3), 518–528 (2005). [CrossRef]
  36. I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. N. Whiteman, M. Mishchenko, and D. Tanré, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multi-wavelength lidar measurements,”J. Geophys. Res. 115, 21203 (2010). [CrossRef]
  37. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42(15), 2571–2592 (2003). [CrossRef] [PubMed]
  38. P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 4
 
Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited