OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1582–1593

Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging

Angelo Pierangelo, Abdelali Benali, Maria-Rosaria Antonelli, Tatiana Novikova, Pierre Validire, Brice Gayet, and Antonello De Martino  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1582-1593 (2011)
http://dx.doi.org/10.1364/OE.19.001582


View Full Text Article

Enhanced HTML    Acrobat PDF (1553 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Cancerous and healthy human colon samples have been analyzed ex-vivo using a multispectral imaging Mueller polarimeter operated in the visible (from 500 to 700 nm) in a backscattering configuration with diffuse light illumination. Three samples of Liberkühn colon adenocarcinomas have been studied: common, mucinous and treated by radiochemotherapy. For each sample, several specific zones have been chosen, based on their visual staging and polarimetric responses, which have been correlated to the histology of the corresponding cuts. The most relevant polarimetric images are those quantifying the depolarization for incident linearly polarized light. The measured depolarization depends on several factors, namely the presence or absence of tumor, its exophytic (budding) or endophytic (penetrating) nature, its thickness (its degree of ulceration) and its level of penetration in deeper layers (submucosa, muscularis externa and serosa). The cellular density, the concentration of stroma, the presence or absence of mucus and the light penetration depth, which increases with wavelength, are also relevant parameters. Our data indicate that the tissues with the lowest and highest depolarizing powers are respectively mucus-free tumoral tissue with high cellular density and healthy serosa, while healthy submucosa, muscularis externa as well as mucinous tumor probably feature intermediate values. Moreover, the specimen coming from a patient treated successfully with radiochemotherapy exhibited a uniform polarimetric response typical of healthy tissue even in the initially pathological zone. These results demonstrate that multi-spectral Mueller imaging can provide useful contrasts to quickly stage human colon cancer ex-vivo and to distinguish between different histological variants of tumor.

© 2011 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 2, 2010
Manuscript Accepted: November 30, 2010
Published: January 13, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Angelo Pierangelo, Abdelali Benali, Maria-Rosaria Antonelli, Tatiana Novikova, Pierre Validire, Brice Gayet, and Antonello De Martino, "Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging," Opt. Express 19, 1582-1593 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-J. Wei, D. Xing, J.-J. Lu, H.-M. Gu, G.-Y. Wu, and Y. Jin, “Determination of optical properties of normal and adenomatous human colon tissues in vitro using integrating sphere techniques,” World J. Gastroenterol. 11(16), 2413–2419 (2005). [PubMed]
  2. B. D. Cameron and H. Anumula, “Development of a real-time corneal birefringence compensated glucose sensing polarimeter,” Diabetes Technol. Ther. 8(2), 156–164 (2006). [CrossRef] [PubMed]
  3. Yu. Lo and T. Yu, “A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal,” Opt. Commun. 259(1), 40–48 (2006). [CrossRef]
  4. X. Guo, M. F. G. Wood, and I. A. Vitkin, “Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry,” Appl. Opt. 46(20), 4491–4500 (2007). [CrossRef] [PubMed]
  5. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997) http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-1-13-441 . [CrossRef]
  6. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999). [CrossRef]
  7. S. L. Jacques, R. Samatham, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (1–7) (2008). [CrossRef]
  8. M. H. Smith, P. Burke, A. Lompado, E. Tanner, and L. W. Hillman, “Mueller matrix imaging polarimetry in dermatology,” Proc. SPIE 3911, 210–216 (2000). [CrossRef]
  9. M. Smith, “Interpreting Mueller matrix images of tissues,” Proc. SPIE 4257, 82–89 (2001). [CrossRef]
  10. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009). [CrossRef] [PubMed]
  11. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering mueller matrix for highly scattering media,” Appl. Opt. 39(10), 1580–1588 (2000). [CrossRef]
  12. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7(3), 279–290 (2002). [CrossRef] [PubMed]
  13. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42(16), 3290–3296 (2003). [CrossRef] [PubMed]
  14. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13(12), 4420–4438 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4420 . [CrossRef] [PubMed]
  15. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  16. R. Ossikovski, C. Fallet, A. Pierangelo, and A. De Martino, “Experimental implementation and properties of Stokes nondiagonalizable depolarizing Mueller matrices,” Opt. Lett. 34(7), 974–976 (2009). [CrossRef] [PubMed]
  17. C. Fallet, A. Pierangelo, R. Ossikovski, and A. De Martino, “Experimental validation of the symmetric decomposition of Mueller matrices,” Opt. Express 18(2), 831–842 (2010). [CrossRef] [PubMed]
  18. D. Hidović-Rowe and E. Claridge, “Modelling and validation of spectral reflectance for the colon,” Phys. Med. Biol. 50(6), 1071–1093 (2005). [CrossRef] [PubMed]
  19. H. J. Thomson, A. Busuttil, M. A. Eastwood, A. N. Smith, and R. A. Elton, “The submucosa of the human colon,” J. Ultrastruct. Mol. Struct. Res. 96(1-3), 22–30 (1986). [CrossRef] [PubMed]
  20. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7(3), 300–306 (2002). [CrossRef] [PubMed]
  21. S. A. Skinner and P. E. O’Brien, “The microvascular structure of the normal colon in rats and humans,” J. Surg. Res. 61(2), 482–490 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited