OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1594–1608

A high-accuracy pseudospectral full-vectorial leaky optical waveguide mode solver with carefully implemented UPML absorbing boundary conditions

Po-jui Chiang and Hung-chun Chang  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1594-1608 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The previously developed full-vectorial optical waveguide eigenmode solvers using pseudospectral frequency-domain (PSFD) formulations for optical waveguides with arbitrary step-index profile is further implemented with the uniaxial perfectly matched layer (UPML) absorption boundary conditions for treating leaky waveguides and calculating their complex modal effective indices. The role of the UPML reflection coefficient in achieving high-accuracy mode solution results is particularly investigated. A six-air-hole microstructured fiber is analyzed as an example to compare with published high-accuracy multipole method results for both the real and imaginary parts of the effective indices. It is shown that by setting the UPML reflection coefficient values as small as on the order of 10−40 ∼ 10−70, relative errors in the calculated complex effective indices can be as small as on the order of 10−12.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.7370) Optical devices : Waveguides
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 16, 2010
Revised Manuscript: January 7, 2011
Manuscript Accepted: January 9, 2011
Published: January 13, 2011

Po-jui Chiang and Hung-chun Chang, "A high-accuracy pseudospectral full-vectorial leaky optical waveguide mode solver with carefully implemented UPML absorbing boundary conditions," Opt. Express 19, 1594-1608 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces,” J. Lightwave Technol. 20, 1210–1218 (2002). [CrossRef]
  2. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002). [CrossRef]
  3. N. Thomas, P. Sewell, and T. M. Benson, “A new full-vectorial higher order finite-difference scheme for the modal analysis of rectangular dielectric waveguides,” J. Lightwave Technol. 25, 2563–2570 (2002). [CrossRef]
  4. Y. C. Chiang, Y. P. Chiou, and H. C. Chang, “Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles,” J. Lightwave Technol. 20, 1609–1618 (2002). [CrossRef]
  5. M. Koshiba, and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000). [CrossRef]
  6. P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of pseudospectral methods to optical waveguide mode solvers,” OSA 2005 Integrated Photonics Research and Applications (IPRA ’05) Technical Digest (Optical Society of America, 2005), paper IMG4.
  7. P. J. Chiang, C. L. Wu, C. H. Teng, C. S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44, 56–66 (2008). [CrossRef]
  8. B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulations of electromagnetic wave scattering,” J. Comput. Phys. 134, 216–230 (1997). [CrossRef]
  9. B. Yang, and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antenn. Propag. 47, 132–141 (1999). [CrossRef]
  10. J. S. Hesthaven, P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999). [CrossRef]
  11. G. Zhao, and Q. H. Liu, “The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media,” IEEE Trans. Antenn. Propag. 52, 742–749 (2004). [CrossRef]
  12. C. H. Teng, B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput. 36, 351–390 (2008). [CrossRef]
  13. B. Y. Lin, H. C. Hsu, C. H. Teng, H. C. Chang, J. K. Wang, and Y. L. Wang, “Unraveling near-field origin of electromagnetic waves scattered from silver nanorod arrays using pseudo-spectral time-domain calculation,” Opt. Express 17, 14211–14228 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-14211. [CrossRef] [PubMed]
  14. Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1, 131–134 (2002). [CrossRef]
  15. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 026703 (2007). [CrossRef]
  16. W. J. Gordon, and C. A. Hall, “Transfinite element methods: blending-function interpolation over arbitrary curved element domains,” Numer. Math. 21, 109–129 (1973). [CrossRef]
  17. C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11, 457–465 (2005). [CrossRef]
  18. T. P. White, B. T. Kuhlmey, R. C. Mcphedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  19. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. Mcphedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  20. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  21. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  22. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antenn. Propag. 43, 1460–1463 (1995). [CrossRef]
  23. P. J. Chiang, and H. C. Chang, “Analysis of leaky optical waveguides using pseudospectral methods,” OSA 2006 Integrated Photonics Research and Applications (IPRA ’06) Technical Digest (Optical Society of America, 2005), paper ITuA3.
  24. C. P. Yu, and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12, 6165–6177 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-25-6165. [CrossRef] [PubMed]
  25. Y. Tsuji, and M. Koshiba, “Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,” J. Lightwave Technol. 18, 618–623 (2000). [CrossRef]
  26. P. J. Chiang, and Y. C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22, 908–910 (2010). [CrossRef]
  27. W. C. Chew, and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  28. K. Saitoh, and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited