OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1609–1616

Design of polarization-selective light emitters using one-dimensional metal grating mirror

Ho-Seok Ee, Sun-Kyung Kim, Soon-Hong Kwon, and Hong-Gyu Park  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1609-1616 (2011)
http://dx.doi.org/10.1364/OE.19.001609


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes a polarization-selective light emitter that can enhance preferentially the spontaneous emission rate of one desired polarization state using a one-dimensional metal grating mirror. Systematic numerical simulations were performed to determine the optimized structural parameters of the metal grating mirror consisting of ITO/silver, in which the two orthogonally polarized lights reflected from the grating mirror undergo completely opposite phases. This metal grating mirror was incorporated into a GaN medium, and the spontaneous emission rate of one linearly polarized light was 1.3 times higher than that of the other at a specific distance between the light source and mirror. In addition, the polarization ratio can be increased to 15:1 by considering the extracted power in a practical vertical GaN slab light-emitting diode structure. This study will be useful for demonstrating high-efficiency polarization-selective light-emitting diodes without using additional optical components, such as a polarizer.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(270.1670) Quantum optics : Coherent optical effects
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Devices

History
Original Manuscript: November 18, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: December 31, 2010
Published: January 13, 2011

Citation
Ho-Seok Ee, Sun-Kyung Kim, Soon-Hong Kwon, and Hong-Gyu Park, "Design of polarization-selective light emitters
using one-dimensional metal grating mirror," Opt. Express 19, 1609-1616 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Display Tech. 3(2), 133–148 (2007). [CrossRef]
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech. 3(2), 160–175 (2007). [CrossRef]
  3. S. Noda and M. Fujita, “Light-emitting diodes: Photonic crystal efficiency boost,” Nat. Photonics 3(3), 129–130 (2009). [CrossRef]
  4. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009). [CrossRef]
  5. K. Bergenek, C. Wiesmann, H. Zull, C. Rumbolz, R. Wirth, N. Linder, K. Streubel, and T. F. Krauss, “Strong high order diffraction of guided modes in micro-cavity light-emitting diodes with hexagonal photonic crystals,” IEEE J. Quantum Electron. 45(12), 1517–1523 (2009). [CrossRef]
  6. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics 3(4), 180–182 (2009). [CrossRef]
  7. S.-K. Kim, H.-K. Cho, D.-K. Bae, J.-S. Lee, H.-G. Park, and Y.-H. Lee, “Efficient GaN slab vertical light-emitting diode covered with a patterned high-index layer,” Appl. Phys. Lett. 92(24), 241118 (2008). [CrossRef]
  8. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, “Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes,” Appl. Phys. Lett. 82(14), 2221 (2003). [CrossRef]
  9. S.-K. Kim, J.-W. Lee, H.-S. Ee, Y.-T. Moon, S.-H. Kwon, H. Kwon, and H.-G. Park, “High-efficiency vertical GaN slab light-emitting diodes using self-coherent directional emitters,” Opt. Express 18(11), 11025–11032 (2010). [CrossRef] [PubMed]
  10. H. Kawamoto, “The History of Liquid-Crystal Displays,” Proc. IEEE 90(4), 460–500 (2002). [CrossRef]
  11. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21(15), 1201–1203 (1996). [CrossRef] [PubMed]
  12. L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald, “Linearly polarized light emission from InGaN light emitting diode with subwavelength metallic nanograting,” Appl. Phys. Lett. 95(26), 261110 (2009). [CrossRef]
  13. G. Zhang, C. Wang, B. Cao, Z. Huang, J. Wang, B. Zhang, and K. Xu, “Polarized GaN-based LED with an integrated multi-layer subwavelength structure,” Opt. Express 18(7), 7019–7030 (2010). [CrossRef] [PubMed]
  14. J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17(25), 22535–22542 (2009). [CrossRef]
  15. Y. Xu, J. S. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16(3), 465–474 (1999). [CrossRef]
  16. J. K. Hwang, H. Y. Ryu, and Y. H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60(7), 4688–4695 (1999). [CrossRef]
  17. The spontaneous emission enhancement rate is defined by the spontaneous emission rate of a dipole source in a structure of interest which is divided by that in a homogeneous medium, as described in refs. [15] and [16].
  18. We used a home-made FDTD code using Drude model, which is accurate in narrow visible spectral range (400 - 500 nm).
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  20. D. R. Lide, CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data, 88th ed. (CRC Press, 2008).
  21. FDTD simulation with a higher resolution of 0.75 nm also provides identical results.
  22. A. Taflove, and S. C. Hagness, Computational electrodynamics: The finite-difference time-domain method, 3rd ed. (Norwood, MA: Artech House, 2005), Chap. 5.
  23. A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett. 92(5), 053502 (2008). [CrossRef]
  24. We tried different values of a and obtained similar h’s although the TE/TM ratios are slightly smaller than the ratio at a = 140 nm.
  25. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000). [CrossRef]
  26. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  27. Similar results were obtained for other values of a, showing slightly smaller polarization ratios.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited