OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 415–424

Polarization-independent broad-band nearly perfect absorbers in the visible regime

Chia-Hung Lin, Ruey-Lin Chern, and Hoang-Yan Lin  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 415-424 (2011)
http://dx.doi.org/10.1364/OE.19.000415


View Full Text Article

Enhanced HTML    Acrobat PDF (2204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization-independent broad-band absorbers in the visible regime are theoretically investigated. The absorbers are three-layered structures consisting of a lossy dielectric grating on top of a low-loss dielectric layer and a substrate of the same lossy dielectric placed at the bottom. Enhanced absorption in the underlying structure is attained over a broad range of frequency for both TE and TM polarizations. In particular, a nearly perfect absorbance (over 99.6%) is achieved at λ ≈ 600 nm, around which the absorption spectra show a substantial overlap between two polarizations. The enhanced absorption is attributed to cavity resonance and its hybridization with a weakly bound surface wave. This feature is illustrated with the electric field patterns and time-averaged power loss density associated with the resonances.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(300.1030) Spectroscopy : Absorption

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 3, 2010
Revised Manuscript: December 20, 2010
Manuscript Accepted: December 21, 2010
Published: January 3, 2011

Citation
Chia-Hung Lin, Ruey-Lin Chern, and Hoang-Yan Lin, "Polarization-independent broad-band nearly perfect absorbers in the visible regime," Opt. Express 19, 415-424 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Genet, and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007). [CrossRef] [PubMed]
  2. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  3. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010). [CrossRef]
  4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  5. D. Crouse, and P. Keshavareddy, "Polarization independent enhanced optical transmission in one-dimensional gratings and device applications," Opt. Express 15, 1415-1427 (2007). [CrossRef] [PubMed]
  6. F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Phys. Rev. B 66, 155412 (2002). [CrossRef]
  7. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, "How holes can obscure the view: Suppressed transmission through an ultrathin metal film by a subwavelength hole array," Phys. Rev. Lett. 103, 203901 (2009). [CrossRef]
  8. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, "Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films," Phys. Rev. B 79, 161406 (2009). [CrossRef]
  9. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. 9, 193-204 (2010). [CrossRef] [PubMed]
  10. V. G. Kravets, F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B 78, 205405 (2008). [CrossRef]
  11. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, "Extraordinary optical absorption through subwavelength slits," Opt. Lett. 34, 686-688 (2009). [CrossRef] [PubMed]
  12. N. C. Panoiu, J. Richard, and M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007). [CrossRef] [PubMed]
  13. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, "Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings," Appl. Phys. Lett. 96, 133302 (2010). [CrossRef]
  14. E. Rephaeli, and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit," Opt. Express 17, 15145-15159 (2009). [CrossRef] [PubMed]
  15. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, "Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks," Opt. Express 17, 22800-22812 (2009). [CrossRef]
  16. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  17. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, "A multispectral and polarization-selective surface-plasmon resonant midinfrared detector," Appl. Phys. Lett. 95, 161101 (2009). [CrossRef]
  18. M. Diem, T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B 79, 033101 (2009). [CrossRef]
  19. T. V. Teperik, V. V. Popov, and F. J. García de Abajo, "Void plasmons and total absorption of light in nanoporous metallic films," Phys. Rev. B 71, 085408 (2005). [CrossRef]
  20. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B 81, 165401 (2010). [CrossRef]
  21. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, "Enhanced light trapping in thin-film solar cells by a directionally selective filter," Opt. Express 18, A133-A138 (2010). [CrossRef] [PubMed]
  22. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  23. C. Hu, Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Opt. Express 17, 11039-11044 (2009). [CrossRef] [PubMed]
  24. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009). [CrossRef]
  25. N. Bonod, and E. Popov, "Total light absorption in a wide range of incidence by nanostructured metals without plasmons," Opt. Lett. 33, 2398-2400 (2008). [CrossRef] [PubMed]
  26. L. Dai, and C. Jiang, "Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating," Opt. Express 17, 20502-20514 (2009). [CrossRef] [PubMed]
  27. M. Sarrazin, and J. P. Vigneron, "Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes," Phys. Rev. E 68, 016603 (2003). [CrossRef]
  28. COMSOL Multiphysics 3.5a (2009).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998).
  30. A. Hessel, and A. A. Oliner, "A new theory of wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965). [CrossRef]
  31. A. G. Borisov, F. J. García de Abajo, and S. V. Shabanov, "Role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials," Phys. Rev. B 71, 075408 (2005). [CrossRef]
  32. Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee, "Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits," Appl. Phys. Lett. 93, 061102 (2008). [CrossRef]
  33. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  34. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and D. M. Robinson, "Remarkable transmission of microwaves through a wall of long metallic bricks," Appl. Phys. Lett. 79, 2844-2846 (2001). [CrossRef]
  35. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  36. X. R. Huang, and R. W. Peng, "General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference," J. Opt. Soc. Am. A 27, 718-729 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited