OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 425–435

New design for photonic temporal integration with combined high processing speed and long operation time window

Mohammad H. Asghari, Yongwoo Park, and José Azaña  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 425-435 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally prove a novel design for implementing photonic temporal integrators simultaneously offering a high processing bandwidth and a long operation time window, namely a large time-bandwidth product. The proposed scheme is based on concatenating in series a time-limited ultrafast photonic temporal integrator, e.g. implemented using a fiber Bragg grating (FBG), with a discrete-time (bandwidth limited) optical integrator, e.g. implemented using an optical resonant cavity. This design combines the advantages of these two previously demonstrated photonic integrator solutions, providing a processing speed as high as that of the time-limited ultrafast integrator and an operation time window fixed by the discrete-time integrator. Proof-of-concept experiments are reported using a uniform fiber Bragg grating (as the original time-limited integrator) connected in series with a bulk-optics coherent interferometers’ system (as a passive 4-points discrete-time photonic temporal integrator). Using this setup, we demonstrate accurate temporal integration of complex-field optical signals with time-features as fast as ~6 ps, only limited by the processing bandwidth of the FBG integrator, over time durations as long as ~200 ps, which represents a 4-fold improvement over the operation time window (~50 ps) of the original FBG integrator.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.2440) Instrumentation, measurement, and metrology : Filters
(320.5540) Ultrafast optics : Pulse shaping
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Optics in Computing

Original Manuscript: November 8, 2010
Revised Manuscript: December 15, 2010
Manuscript Accepted: December 16, 2010
Published: January 3, 2011

Mohammad H. Asghari, Yongwoo Park, and José Azaña, "New design for photonic temporal integration with combined high processing speed and long operation time window," Opt. Express 19, 425-435 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Oppenheim, A. S. Willsky, and S. Hamid, Signals and Systems, 2nd ed. Upper Saddle River, (NJ: Prentice Hall, 1996).
  2. J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photon. J. 2(3), 359–386 (2010). [CrossRef]
  3. N. Q. Ngo, “Optical integrator for optical dark-soliton detection and pulse shaping,” Appl. Opt. 45(26), 6785–6791 (2006). [CrossRef] [PubMed]
  4. N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-Based Integrators for Dark Soliton Generation,” J. Lightwave Technol. 24(1), 563–572 (2006). [CrossRef]
  5. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T. J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  6. Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit,” Opt. Express 17(15), 12835–12848 (2009). [CrossRef] [PubMed]
  7. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef] [PubMed]
  8. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33(1), 4–6 (2008). [CrossRef]
  9. Y. Park, T. J. Ahn, Y. Dai, J. Yao, and J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008). [CrossRef] [PubMed]
  10. M. H. Asghari and J. Azaña, “On the design of efficient and accurate arbitrary-order temporal optical integrators using fiber Bragg gratings,” J. Lightwave Technol. 27(17), 3888–3895 (2009). [CrossRef]
  11. M. H. Asghari, C. Wang, J. Yao, and J. Azaña, “High-order passive photonic temporal integrators,” Opt. Lett. 35(8), 1191–1193 (2010). [CrossRef] [PubMed]
  12. Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 1–8 (2010).
  13. R. Feced and M. N. Zervas, “Effects of random phase and amplitude errors in optical fiber Bragg gratings,” J. Lightwave Technol. 18(1), 90–101 (2000). [CrossRef]
  14. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  15. L. Lepetit, G. Chériaux, and M. Joffre, “Linear technique of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited