OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 476–481

Optical twists in phase and amplitude

Vincent R. Daria, Darwin Z. Palima, and Jesper Glückstad  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 476-481 (2011)
http://dx.doi.org/10.1364/OE.19.000476


View Full Text Article

Enhanced HTML    Acrobat PDF (981 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles.

© 2011 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(260.0260) Physical optics : Physical optics
(350.5500) Other areas of optics : Propagation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Physical Optics

History
Original Manuscript: September 30, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 20, 2010
Published: January 3, 2011

Citation
Vincent R. Daria, Darwin Z. Palima, and Jesper Glückstad, "Optical twists in phase and amplitude," Opt. Express 19, 476-481 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-476


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  3. K. P. Marzlin, W. Zhang, and E. Wright, “Vortex coupler for atomic Bose-Einstein condensates,” Phys. Rev. Lett. 79(24), 4728–4731 (1997). [CrossRef]
  4. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998). [CrossRef]
  5. M. J. Holland and J. E. Williams, “Preparing topological states of a Bose-Einstein condensate,” Nature 401(6753), 568–572 (1999). [CrossRef]
  6. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006). [CrossRef] [PubMed]
  7. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995). [CrossRef] [PubMed]
  8. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42(1), 217–223 (1995). [CrossRef]
  9. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54(2), 1593–1596 (1996). [CrossRef] [PubMed]
  10. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chavez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002). [CrossRef]
  11. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  12. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  13. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and M. J. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65(3), 033823 (2002). [CrossRef]
  14. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, “Helico-conical optical beams: a product of helical and conical phase fronts,” Opt. Express 13(5), 1749–1760 (2005). [CrossRef] [PubMed]
  15. G. Overton, “Optical vortices: phase functions are inseperable in Helico-Conical beams,” Laser Focus World, Optoelectronic world news, May 2005.
  16. Y. Schechner, R. Piestun, and J. Shamir, “Wave propagation with rotating intensity distribution,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(1), 50–53 (1996). [CrossRef]
  17. A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88(5), 053901 (2002). [CrossRef] [PubMed]
  18. D. Buccoliero, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spiraling multivortex solitons in nonlocal nonlinear media,” Opt. Lett. 33(2), 198–200 (2008). [CrossRef] [PubMed]
  19. V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34(14), 2129–2131 (2009). [CrossRef] [PubMed]
  20. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]
  21. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef]
  22. J. Goodman, Introduction to Fourier Optics (McGraw-Hill 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MPG (3434 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited