OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 493–505

Optimal design of a microcavity organic laser device under electrical pumping

M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, A. Fischer, A. Boudrioua, and C.C. Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 493-505 (2011)
http://dx.doi.org/10.1364/OE.19.000493


View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quality factor of microcavity organic lasers, designed for operation under electric pumping, has been numerically investigated. The microcavity structure consists of an organic light emitting diode set in between multilayer dielectric mirrors centered for an emission at 620 nm. In order to optimize the quality factor, different parameters have been studied: the impact of high and low index materials used for the multilayer mirrors, the role of a spacer inserted in between the mirrors to obtain an extended cavity, and the effect of an absorbing electrode made of metallic or transparent conductive oxide layer. The results of our different optimizations have shown a quality factor (Q) as high as 15 000.

© 2011 OSA

OCIS Codes
(160.4890) Materials : Organic materials
(250.3680) Optoelectronics : Light-emitting polymers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 27, 2010
Revised Manuscript: November 22, 2010
Manuscript Accepted: December 7, 2010
Published: January 3, 2011

Citation
M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, A. Fischer, A. Boudrioua, and C.C. Lee, "Optimal design of a microcavity organic laser device under electrical pumping," Opt. Express 19, 493-505 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Tessler, G. J. Denton, and R. H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996). [CrossRef]
  2. J. H. Schön, Ch. Kloc, A. Dodabalapur, and B. Batlogg, “An organic solid state injection laser,” Science 289(5479), 599–601 (2000). [CrossRef] [PubMed]
  3. M. A. Baldo, D. F. O'Brien, M. E. Thompson, and S. R. Forrest, “Prospects for electrically pumped organic lasers,” Phys. Rev. 66, 1–16 (2002).
  4. E. J. W. List, C.-H. Kim, A. K. Naik, U. Scherf, G. Leising, W. Graupner, and J. Shinar, “Interaction of singlet excitons with polarons in wide band-gap organic semiconductors: A quantitative study,” Phys. Rev. 64, 1–11 (2001).
  5. N. Tessler, “Lasers Based on Semiconducting Organic Materials,” Adv. Mater. 11(5), 363–370 (1999). [CrossRef]
  6. V. G. Kozlov, G. Parthasarathy, E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest, “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations: Feature issue on prospects for electrically pumped stimulated emission in organic semiconductors,” IEEE J. Quantum Electron. 36(1), 18–26 (2000). [CrossRef]
  7. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–16 (2005). [CrossRef]
  8. S. V. Frolov, M. Liess, P. A. Lane, W. Gellermann, Z. V. Vardeny, M. Ozaki, and K. Yoshino, “Exciton Dynamics in soluble Poly(p-phenylene-vinylene): Towards an Ultrafast Excitonic Switch,” K. Phys. Rev. Lett. 78(22), 4285–4288 (1997). [CrossRef]
  9. N. Tessler, N. T. Harrison, and R. H. Friend, “High peak brightness polymer light-emitting diodes,” Adv. Mater. 10(1), 64–68 (1998). [CrossRef]
  10. T. W. Lee, O. O. Park, H. N. Cho, D. Y. Kim, and Y. C. Kim, “Low-threshold lasing in a microcavity of fluorene-based liquid-crystalline polymer blends,” J. Appl. Phys. 93(3), 1367–1370 (2003). [CrossRef]
  11. M. Berggren, A. Dodabalapur, R. E. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389(6650), 466–469 (1997). [CrossRef]
  12. X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004). [CrossRef]
  13. V. G. Kozlov, P. E. Burrows, G. Parthasarathy, and S. R. Forrest, “Optical properties of molecular organic semiconductor thin films under intense electrical excitation,” Appl. Phys. Lett. 74(8), 1057–1059 (1999). [CrossRef]
  14. D. J. Pine, N. Tessler, and R. H. Friend, “Moving the recombination zone in two layer polymer LEDs using high voltage pulses,” Synth. Met. 102(1-3), 1108–1109 (1999). [CrossRef]
  15. N. Tessler, N. T. Harrison, and R. H. Friend, “High Peak Brightness Polymer Light-Emitting Diodes,” Adv. Mater. 10(1), 64–68 (1998). [CrossRef]
  16. N. Tessle, D. J. Pinner, V. Cleave, P. K. H. Ho, R. H. Friend, G. Yahiogluc, P. Le Barnyd, J. Grayc, M. de Souzac, and G. Rumbles, “Properties of light emitting organic materials within the context of future electrically pumped lasers,” Synth. Met. 115(1-3), 57–62 (2000). [CrossRef]
  17. V. G. Kozlov, G. Parthasarathy, P. E. Burrows, V. B. Khalfin, J. Wang, S. Y. Chou, and S. R. Forrest “Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations,” IEEE J. Quant. Electron. 36(1), 18–26 (2000). [CrossRef]
  18. B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” adv,” Mater 12, 1655–1668 (2000).
  19. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, “Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer,” Appl. Phys. Lett. 87(22), 1–3 (2005). [CrossRef]
  20. S. Lattante, F. Romano, A. P. Caricato, M. Martino, and M. Anni, “Low electrode induced optical losses in organic active single layer polyfluorene waveguides with two indium tin oxide electrodes deposited by pulsed laser deposition,” Appl. Phys. Lett. 89(3), 1–3 (2006). [CrossRef]
  21. P. Gorm, T. Rabe, T. Riedl, and W. Kowalsky, “Loss reduction in fully contacted organic laser waveguides using TE2 modes,” Appl. Phys. Lett. 91, 1–3 (2007).
  22. G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003). [CrossRef]
  23. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000). [CrossRef]
  24. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999). [CrossRef]
  25. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006). [CrossRef] [PubMed]
  26. S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998). [CrossRef]
  27. A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007). [CrossRef]
  28. A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005). [CrossRef]
  29. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: Design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991). [CrossRef]
  30. S. A. Furman, and A. V. Tikhonravov, “Basic of optics of multilayer systems” (Ed.) Frontieres 1992.
  31. S. R. A. Dods, Z. Zhang, and M. Ogura, “Highly dispersive mirror in Ta2O5/SiO2 for femtosecond lasers designed by inverse spectral theory,” Appl. Opt. 38(21), 4711–4719 (1999). [CrossRef]
  32. R. Bassiri, K. B. Borisenko, D. J. H. Cockayne, J. Hough, I. MacLaren, and S. Rowan, “Probing the atomic structure of amorphous Ta2O5 mirror coatings for advanced gravitational wave detectors using transmission electron microscopy,” J. Phys.: Conference Series 241, 012070 (2010). [CrossRef]
  33. J. H. James, M. J. Proctro, C. Faure, W. Baer, and F. K. Reinhartf, “SiO2/TiO2 quarter wave dielectric mirrors for vertical cavity surface emitting lasers,” Helvetica Physica Acta 63, 513–514 (1990).
  34. M. Punke, S. Mozer, M. Stroisch, M. Gerken, G. Bastian, and U. Lemmer, “Organic semiconductor devices for micro-optical applications,” Proc. of SPIE 6185, 618505 1–13 (2006).
  35. H. Kim, A. Pique, J. S. Horwitz, H. Mattoussi, Z. H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes,” Appl. Phys. Lett. 78(8), 1050–1052 (2001). [CrossRef]
  36. W. Rammal, and Ph. D. Thesis, “Réalisation de diodes électroluminescentes souples et caractérisations,” University of Limoges (France), Thesis N°1 (2006).
  37. M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, and M. Aldissi, “High quality transparent conductive electrodes in organic photovoltaic devices,” Thin Solid Films 518(4), 1250–1253 (2009). [CrossRef]
  38. S. Y. Ryu, J. H. Noh, H. S. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 1–3 (2008). [CrossRef]
  39. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous Emission from Planar Microstructures,” J. Mod. Opt. 41(2), 325–344 (1994). [CrossRef]
  40. A. Dodabalapur, L. J. Rothberg, and T. Miller, “Color variation with electroluminescent organic semiconductors in multimode resonant cavities,” Appl. Phys. Lett. 65(18), 2308–2310 (1994). [CrossRef]
  41. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256(5053), 66–70 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited