OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 512–526

Transition mode long period grating biosensor with functional multilayer coatings

Pierluigi Pilla, Viera Malachovská, Anna Borriello, Antonietta Buosciolo, Michele Giordano, Luigi Ambrosio, Antonello Cutolo, and Andrea Cusano  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 512-526 (2011)
http://dx.doi.org/10.1364/OE.19.000512


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report our latest research results concerning the development of a platform for label-free biosensing based on overlayered Long Period Gratings (LPGs) working in transition mode. The main novelty of this work lies in a multilayer design that allows to decouple the problem of an efficient surface functionalization from that of the tuning in transition region of the cladding modes. An innovative solvent/nonsolvent strategy for the dip-coating technique was developed in order to deposit on the LPG multiple layers of transparent polymers. In particular, a primary coating of atactic polystyrene was used as high refractive index layer to tune the working point of the device in the so-called transition region. In this way, state-of-the-art-competitive sensitivity to surrounding medium refractive index changes was achieved. An extremely thin secondary functional layer of poly(methyl methacrylate-co-methacrylic acid) was deposited onto the primary coating by means of an original identification of selective solvents. This approach allowed to obtain desired functional groups (carboxyls) on the surface of the device for a stable covalent attachment of bioreceptors and minimal perturbation of the optical design. Standard 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide / N-hydrosuccinimide (EDC / NHS) coupling chemistry was used to link streptavidin on the surface of the coated LPG. Highly sensitive real-time monitoring of multiple affinity assays between streptavidin and biotinylated bovine serum albumin was performed by following the shift of the LPGs attenuation bands.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.0310) Optics at surfaces : Thin films
(350.2770) Other areas of optics : Gratings
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: July 21, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: September 27, 2010
Published: January 3, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Pierluigi Pilla, Viera Malachovská, Anna Borriello, Antonietta Buosciolo, Michele Giordano, Luigi Ambrosio, Antonello Cutolo, and Andrea Cusano, "Transition mode long period grating biosensor with functional multilayer coatings," Opt. Express 19, 512-526 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14(5), R49–R61 (2003). [CrossRef]
  3. R. Falciai, A. G. Mignani, and A. Vannini, “Long period gratings as solution concentration sensors,” Sens. Actuators B Chem. 74(1-3), 74–77 (2001). [CrossRef]
  4. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000). [CrossRef] [PubMed]
  5. N. D. Rees, S. W. James, R. P. Tatam, and G. J. Ashwell, “Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays,” Opt. Lett. 27(9), 686–688 (2002). [CrossRef]
  6. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne, “Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition,” Opt. Express 13(1), 56–69 (2005). [CrossRef] [PubMed]
  7. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity,” Opt. Lett. 30(19), 2536–2538 (2005). [CrossRef] [PubMed]
  8. Z. Wang, J. Heflin, R. Stolen, and S. Ramachandran, “Analysis of optical response of long period fiber gratings to nm-thick thin-film coating,” Opt. Express 13(8), 2808–2813 (2005). [CrossRef] [PubMed]
  9. A. Cusano, P. Pilla, M. Giordano, and A. Cutolo, “Modal Transition in Nano-Coated Long Period Fiber Gratings: Principle and Applications to Chemical Sensing,” in Advanced Photonic Structure for Biological and Chemical Detection, X. Fan, Ed. (Springer, 2009).
  10. P. Pilla, P. F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, and A. Cusano, “Long period grating working in transition mode as promising technological platform for label-free biosensing,” Opt. Express 17(22), 20039–20050 (2009). [CrossRef] [PubMed]
  11. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006). [CrossRef]
  12. Z. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009). [CrossRef]
  13. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007). [CrossRef] [PubMed]
  14. J. Yang, P. Sandhu, W. Liang, C. Xu, and Y. Li, “Label free fiber optic biosensors with enhanced sensitivity,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1691–1696 (2007). [CrossRef]
  15. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  16. H. Shibru, Y. Zhang, K. L. Cooper, G. R. Pickrell, and A. Wang, “Optimization of layer-by-layer electrostatic self-assembly processing parameters for optical biosensing,” Opt. Eng. 45(2), 024401 (2006). [CrossRef]
  17. I. Del Villar, I. R. Matias, F. J. Arregui, and M. Achaerandio, “Nanodeposition of materials with complex refractive index in long-period fiber gratings,” J. Lightwave Technol. 23, 4192 (2005). [CrossRef]
  18. E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol-Gel derived coating applied to long period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt. 11(1), 015501 (2009). [CrossRef]
  19. J. M. Goddard and J. H. Hotchkiss, “Polymer surface modification for the attachment of bioactive compounds,” Prog. Polym. Sci. 32(7), 698–725 (2007). [CrossRef]
  20. J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, “Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors,” IEEE Trans. NanoTechnol. 7(4), 394–400 (2008). [CrossRef]
  21. I. Del Villar, I. R. Matias, and F. J. Arregui, “Deposition of coatings on long-period fiber gratings: tunnel effect analogy,” Opt. Quantum Electron. 38(8), 655–665 (2006). [CrossRef]
  22. K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-polymeric photonic bandgap Bragg fibers using rolling of coextruded PS/PMMA multilayer films,” Polym. Eng. Sci. 50(6), 1122–1127 (2010). [CrossRef]
  23. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14(19), 1339–1365 (2002). [CrossRef]
  24. D. Ennis, H. Betz, and H. Ade, “Direct spincasting of polystyrene thin films onto poly(methyl methacrylate),” J. Polym. Sci. Part B: Polym. Phys. 44(22), 3234–3244 (2006). [CrossRef]
  25. M. J. E. Fischer, “Amine coupling through EDC/NHS: a practical approach,” Methods Mol. Biol. 627, 55–73 (2010). [CrossRef] [PubMed]
  26. A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano, “Sensitivity characteristics in nanosized coated long period gratings,” Appl. Phys. Lett. 89(20), 201116 (2006). [CrossRef]
  27. P. Pilla, P. Foglia Manzillo, M. Giordano, M. L. Korwin-Pawlowski, W. J. Bock, and A. Cusano, “Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations,” Opt. Express 16(13), 9765–9780 (2008). [CrossRef] [PubMed]
  28. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002). [CrossRef]
  29. B. Bhushan, D. R. Tokachichu, M. T. Keener, and S. C. Lee, “Morphology and adhesion of biomolecules on silicon based surfaces,” Acta Biomater 1(3), 327–341 (2005). [CrossRef]
  30. M. Unemori, Y. Matsuya, S. Matsuya, A. Akashi, and A. Akamine, “Water absorption of poly(methyl methacrylate) containing 4-methacryloxyethyl trimellitic anhydride,” Biomaterials 24(8), 1381–1387 (2003). [CrossRef] [PubMed]
  31. B. Spačková, M. Piliarik, P. Kvasnicka, C. Themistos, M. Rajarajan, and J. Homola, “Novel concept of multi-channel fiber optic surface plasmon resonance sensor,” Sens. Actuators B Chem. 139(1), 199–203 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited