OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 597–605

Si nanorod length dependent surface Raman scattering linewidth broadening and peak shift

Gong-Ru Lin, Yung-Hsiang Lin, Yi-Hao Pai, and Fan-Shuen Meng  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 597-605 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced Stoke Raman scattering of large-area vertically aligned Si nanorod surface etched by metal-particle-catalytic is investigated. By enlarging the surface area with lengthening Si nanorods, the linear enhancement on Stoke Raman scattering intensity at 520 cm−1 is modeled to show well correlation with increasing quantity of surface Si dangling bonds. With Si nanorod length increasing from 0.19 to 2.73 μm, the Raman peaks of the as-etched and oxidized samples gradually shift from −4 cm−1 and from −4.5 cm−1 associated with their linewidth broadening from 3 to 9 cm−1 and from 7 to 18 cm−1, respectively. The peak intensity of Raman scattering signal from Si nanorod could be enhanced with the increase of interaction area as the number of phonon mode directly corresponds to the tetrahedrally coordinated Si vibrations in the bulk crystal lattice. The asymmetric linewidth broadening and corresponding Raman peak shift is affected by the strained Si nanorod surface caused by etching and the crystal quality. Fourier transform infrared spectroscopy corroborates the dependency between nanorod length and Si-O-Si stretching mode absorption (at 1097 cm−1) on oxidized Si nanorod surface, elucidating the increased transformation of surface dangling bonds to Si-O-Si bonds for passivating Si nanorods and attenuating Stoke Raman scattering after oxidation.

© 2011 OSA

OCIS Codes
(290.5860) Scattering : Scattering, Raman
(160.4236) Materials : Nanomaterials
(180.5655) Microscopy : Raman microscopy

ToC Category:

Original Manuscript: June 7, 2010
Revised Manuscript: August 1, 2010
Manuscript Accepted: August 10, 2010
Published: January 5, 2011

Gong-Ru Lin, Yung-Hsiang Lin, Yi-Hao Pai, and Fan-Shuen Meng, "Si nanorod length dependent surface Raman scattering linewidth broadening and peak shift," Opt. Express 19, 597-605 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Xu and X. J. Li, “Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence,” Opt. Express 16(5), 2933–2941 (2008). [CrossRef] [PubMed]
  2. D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, and S. Q. Feng, “Direct evidence of quantum confinement from the size dependence of the photoluminescence of silicon quantum wires,” Phys. Rev. B 59(4), R 2498– R 2501 (1999). [CrossRef]
  3. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  4. G.-R. Lin, C.-J. Lin, H.-C. Kuo, H.-S. Lin, and C.-C. Kao, “Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask,” Appl. Phys. Lett. 90(14), 143102 (2007). [CrossRef]
  5. M. A. Ochsenkühn, P. R. T. Jess, H. Stoquert, K. Dholakia, and C. J. Campbell, “Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development,” ACS Nano 3(11), 3613–3621 (2009). [CrossRef] [PubMed]
  6. P. Prabhathan, V. M. Murukeshan, Z. Jing, and P. V. Ramana, “Compact SOI nanowire refractive index sensor using phase shifted Bragg grating,” Opt. Express 17(17), 15330–15341 (2009). [CrossRef] [PubMed]
  7. I. Park, Z. Li, X. Li, A. P. Pisano, and R. S. Williams, “Towards the silicon nanowire-based sensor for intracellular biochemical detection,” Biosens. Bioelectron. 22(9-10), 2065–2070 (2007). [CrossRef]
  8. J. B. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. I. Dadap, and R. M. Osgood., “Large longitudinal electric fields (Ez) in silicon nanowire waveguides,” Opt. Express 17(4), 2797–2804 (2009). [CrossRef] [PubMed]
  9. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008). [CrossRef] [PubMed]
  10. G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009). [CrossRef] [PubMed]
  11. L. Sirleto, V. Raghunatan, A. Rossi, and B. Jalali, “Raman emission in porous silicon at 1.54 μm,” Electron. Lett. 40(19), 1221–1222 (2004). [CrossRef]
  12. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, “Raman analysis of light-emitting porous silicon,” Appl. Phys. Lett. 60(17), 2086–2088 (1992). [CrossRef]
  13. L. Sirleto, M. A. Ferrara, B. Jalali, and I. Rendina, “Spontaneous Raman emission in porous silicon at 1.5 µm and prospects for a Raman amplifier,” J. Opt. A, Pure Appl. Opt. 8(7), S574–S577 (2006). [CrossRef]
  14. B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Phys. Rev. B 59(3), 1645–1648 (1999). [CrossRef]
  15. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. 12(18), 1343–1345 (2000). [CrossRef]
  16. K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, and T. Kurosawa, “Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy,” Jpn. J. Appl. Phys. 42(Part 1, No. 11), 6742–6747 (2003). [CrossRef]
  17. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. T. Lee, “Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution,” Chemistry 12(30), 7942–7947 (2006). [CrossRef] [PubMed]
  18. W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009). [CrossRef] [PubMed]
  19. S. M. Wells, S. D. Retterer, J. M. Oran, and M. J. Sepaniak, “Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy,” ACS Nano 3(12), 3845–3853 (2009). [CrossRef] [PubMed]
  20. B. Ren, F. M. Liu, J. Xie, B. W. Mao, Y. B. Zu, and Z. Q. Tian, “In situ monitoring of Raman scattering and photoluminescence from silicon surfaces in HF aqueous solutions,” Appl. Phys. Lett. 72(8), 933–935 (1998). [CrossRef]
  21. L. Z. Liu, X. L. Wu, Z. Y. Zhang, T. H. Li, and P. K. Chu, “Raman investigation of oxidation mechanism of silicon nanowires,” Appl. Phys. Lett. 95(9), 093109–093111 (2009). [CrossRef]
  22. E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett. 63(11), 1510–1512 (1993). [CrossRef]
  23. A. Torres, A. Martín-Martín, O. Martínez, A. C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, and T. Rodríguez, “Micro-Raman spectroscopy of Si nanowires: Influence of diameter and temperature,” Appl. Phys. Lett. 96(1), 011904–011906 (2010). [CrossRef]
  24. R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, D. P. Yu, and Z. Zhang, “Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects,” Phys. Rev. B 61(24), 16827–16832 (2000). [CrossRef]
  25. M. Yang, D. Huang, P. Hao, F. Zhang, X. Hou, and X. Wang, “Study of the Raman peak shift and the linewidth of light-emitting porous silicon,” J. Appl. Phys. 75(1), 651–653 (1994). [CrossRef]
  26. I. M. Young, M. I. J. Beale, and J. D. Benjamin, “X-ray double crystal diffraction study of porous silicon,” Appl. Phys. Lett. 46(12), 1133–1135 (1985). [CrossRef]
  27. D. B. Mawhinney, J. A. Glass, J. T. Yates, J. A. Glass, and J. T. Yates, “FTIR Study of the Oxidation of Porous Silicon,” J. Phys. Chem. B 101(7), 1202–1206 (1997). [CrossRef]
  28. W. Kaiser, P. H. Keck, and C. F. Lange, “Infrared absorption and oxygen content in silicon and germanium,” Phys. Rev. 101(4), 1264–1268 (1956). [CrossRef]
  29. Q. Hu, H. Suzuki, H. Gao, H. Araki, W. Yang, and T. Noda, “High-frequency FTIR absorption of SiO2/Si nanowires,” Chem. Phys. Lett. 378(3-4), 299–304 (2003). [CrossRef]
  30. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004). [CrossRef]
  31. J. Camassel, L. A. Falkovsky, and N. Planes, “Strain effect in silicon-on-insulator materials: Investigation with optical phonons,” Phys. Rev. B 63(3), 035309 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited