OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 628–637

Electromagnetically induced transparency in hybrid plasmonic-dielectric system

Bin Tang, Lei Dai, and Chun Jiang  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 628-637 (2011)
http://dx.doi.org/10.1364/OE.19.000628


View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theoretical and numerical analysis of a plasmonic-dielectric hybrid system for symmetric and asymmetric coupling between silver cut-wire pairs and silicon grating waveguide with periodic grooves. The results show that both couplings can induce electromagnetically-induced transparency (EIT) analogous to the quantum optical phenomenon. The transmission spectrum shows a single transparency window for the symmetric coupling. The strong normal phase dispersion in the vicinity of this transparent window results in the slow light effect. However, the transmission spectrum appears an additional transparency window for asymmetry coupling due to the double EIT effect, which stems from an asymmetrically coupled resonance (ACR) between the dark and bright modes. More importantly, the excitation of ACR is further associated with remarkable improvement of the group index from less than 40 to more than 2500 corresponding to a high transparent efficiency by comparing with the symmetry coupling. This scheme provides an alternative way to develop the building block of systems for plasmonic sensing, all optical switching and slow light applications.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 22, 2010
Revised Manuscript: September 20, 2010
Manuscript Accepted: September 20, 2010
Published: January 5, 2011

Citation
Bin Tang, Lei Dai, and Chun Jiang, "Electromagnetically induced transparency in hybrid plasmonic-dielectric system," Opt. Express 19, 628-637 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005). [CrossRef]
  3. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  5. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005). [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  7. C. L. Garrido-Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37-41 (2002). [CrossRef]
  8. A. G. Litvak and M. D. Tokman, “Electromagnetically induced transparency in ensembles of classical oscillators,” Phys. Rev. Lett. 88(9), 095003 (2002). [CrossRef] [PubMed]
  9. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004). [CrossRef] [PubMed]
  10. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29(6), 626–628 (2004). [CrossRef] [PubMed]
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]
  12. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006). [CrossRef] [PubMed]
  13. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006). [CrossRef] [PubMed]
  14. Y. Xiao, X. Zou, W. Jiang, Y. Chen, and G. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007). [CrossRef]
  15. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]
  16. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmon systems,” Phys. Rev. B 80(19), 195415 (2009). [CrossRef]
  17. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  18. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  19. H. Xu, and B. Ham, “Plasmon-induced photonic switching in a metamaterial,” Arxiv preprint arXiv:0905.3102 (2009).
  20. Y. Lu, H. Xu, N. Tung, J. Rhee, W. Jang, B. Ham, and Y. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” Arxiv preprint arXiv:0906.4029 (2009).
  21. X. Su, Z. Zhang, L. Zhang, Q. Li, C. Chen, Z. Yang, and Q. Wang, “Plasmonic interferences and optical modulations in dark-bright-dark plasmon resonators,” Appl. Phys. Lett. 96(4), 043113 (2010). [CrossRef]
  22. X. Jin, Y. Lu, H. Zheng, Y. Lee, J. Y. Rhee, and W. H. Jang, “Plasmonic electromagnetically-induced transparency in symmetric structures,” Opt. Express 18(13), 13396–13401 (2010). [CrossRef] [PubMed]
  23. H. Xu, Y. Lu, Y. Lee, and B. S. Ham, “Studies of electromagnetically induced transparency in metamaterials,” Opt. Express 18(17), 17736–17747 (2010). [CrossRef] [PubMed]
  24. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef] [PubMed]
  25. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20(23), 4521–4525 (2008). [CrossRef]
  26. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009). [CrossRef] [PubMed]
  27. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009). [CrossRef]
  28. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009). [CrossRef]
  29. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17(7), 5595–5605 (2009). [CrossRef] [PubMed]
  30. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107(9), 093104 (2010). [CrossRef]
  31. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, and N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18(16), 17187–17192 (2010). [CrossRef] [PubMed]
  32. N. Papasimakis, Y. Fu, V. Fedotov, S. Prosvirnin, D. Tsai, and N. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009). [CrossRef]
  33. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18(17), 18229–18234 (2010). [CrossRef] [PubMed]
  34. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80(3), 035104 (2009). [CrossRef]
  35. R. Kekatpure, E. Barnard, W. Cai, and M. Brongersma, “Phase-Coupled Plasmon-Induced Transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]
  36. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007). [CrossRef] [PubMed]
  37. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  38. C. Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009). [CrossRef] [PubMed]
  39. K. Aydin, I. M. Pryce, and H. A. Atwater, “Symmetry breaking and strong coupling in planar optical metamaterials,” Opt. Express 18(13), 13407–13417 (2010). [CrossRef] [PubMed]
  40. Z. Huang, J. Xue, Y. Hou, J. Chu, and D. Zhang, “Optical magnetic response from parallel plate metamaterials,” Phys. Rev. B 74(19), 193105 (2006). [CrossRef]
  41. A. Christ, O. J. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8(8), 2171–2175 (2008). [CrossRef] [PubMed]
  42. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  43. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010). [CrossRef]
  44. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008). [CrossRef]
  45. M. Soljačić, E. Lidorikis, J. Joannopoulos, and L. Hau, “Ultralow-power all-optical switching,” Appl. Phys. Lett. 86(17), 171101 (2005). [CrossRef]
  46. R. W. Boyd and D. J. Gauthier, “Photonics: transparency on an optical chip,” Nature 441(7094), 701–702 (2006). [CrossRef] [PubMed]
  47. D. Sullivan, Electromagnetic simulation using the FDTD method, (IEEE Press, New York, 2000).
  48. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited