OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 679–686

Shot noise limited characterization of ultraweak femtosecond pulse trains

Osip Schwartz, Oren Raz, Ori Katz, Nirit Dudovich, and Dan Oron  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 679-686 (2011)
http://dx.doi.org/10.1364/OE.19.000679


View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast science is inherently, due to the lack of fast enough detectors and electronics, based on nonlinear interactions. Typically, however, nonlinear measurements require significant powers and often operate in a limited spectral range. Here we overcome the difficulties of ultraweak ultrafast measurements by precision time-domain localization of spectral components. We utilize this for linear self-referenced characterization of pulse trains having ∼ 1 photon per pulse, a regime in which nonlinear techniques are impractical, at a temporal resolution of ∼ 10 fs. This technique does not only set a new scale of sensitivity in ultrashort pulse characterization, but is also applicable in any spectral range from the near-infrared to the deep UV.

© 2011 Optical Society of America

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 11, 2010
Revised Manuscript: December 9, 2010
Manuscript Accepted: December 13, 2010
Published: January 5, 2011

Citation
Osip Schwartz, Oren Raz, Ori Katz, Nirit Dudovich, and Dan Oron, "Shot noise limited characterization of ultraweak femtosecond pulse trains," Opt. Express 19, 679-686 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-679


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Diddams, J. Bergquist, S. Jefferts, and C. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004). [CrossRef] [PubMed]
  2. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002). [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313, 1642–1645 (2006). [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods 3, 793–796 (2006). [CrossRef] [PubMed]
  5. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nature Photon. (2010). [CrossRef]
  6. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997). [CrossRef]
  7. Q1I. A. Walmsley, and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1, 308–437 (2009). [CrossRef]
  8. R. Trebino, and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101–1111 (1993). [CrossRef]
  9. C. Iaconis, and I. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998). [CrossRef]
  10. R. Trebino, ed., Frequency - resolved optical gating: The Measurement of ultrashort laser pulses (Kluwer Academic, 2002). [CrossRef]
  11. C. Dorrer, and I. Kang, “Linear self-referencing techniques for short-optical-pulse characterization,” J. Opt. Soc. Am. B 25, A1–A12 (2008). [CrossRef]
  12. D. Reid, and J. Harvey, “Linear Spectrograms Using Electrooptic Modulators,” IEEE Photon. Technol. Lett. 19, 535–537 (2007). [CrossRef]
  13. K. Mori, T. Morioka, and M. Saruwatari, “Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 mu;m compact laser source,” IEEE Trans. Instrum. Meas. 44, 712–715 (1995). [CrossRef]
  14. C. Dorrer, and J. Bromage, “High-sensitivity optical pulse characterization using Sagnac electro-optic spectral shearing interferometry,” Opt. Lett. 35, 1353–1355 (2010). [CrossRef] [PubMed]
  15. I. Kang, C. Dorrer, and F. Quochi, “Implementation of electro-optic spectral shearing interferometry for ultrashort pulse characterization,” Opt. Lett. 28, 2264–2266 (2003). [CrossRef] [PubMed]
  16. P. Kockaert, M. Haelterman, P. Emplit, and C. Froehly, “Complete characterization of (ultra)short optical pulses using fast linear detectors,” IEEE J. Sel. Top. Quantum Electron. 10, 206–212 (2004). [CrossRef]
  17. S. Moon, and D. Kim, “Reflectometric fiber dispersion measurement using a supercontinuum pulse source,” IEEE Photon. Technol. Lett. 21, 1262–1264 (2009). [CrossRef]
  18. S. Prein, S. Diddams, and J. Diels, “Complete characterization of femtosecond pulses using an all-electronic detector,” Opt. Commun. 123, 567–573 (1996). [CrossRef]
  19. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbügel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884–886 (1996). [CrossRef] [PubMed]
  20. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatialspectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14, 2095–2098 (1997). [CrossRef]
  21. M. Beck, C. Dorrer, and I. Walmsley, “Joint quantum measurement using unbalanced array detection,” Phys. Rev. Lett. 87, 253601 (2001). [CrossRef] [PubMed]
  22. H. Miao, S.-D. Yang, C. Langrock, R. V. Roussev, M. M. Fejer, and A. M. Weiner, “Ultralow-power secondharmonic generation frequency-resolved optical gating using aperiodically poled lithium niobate waveguides,” J. Opt. Soc. Am. B 25, A41–A53 (2008). [CrossRef]
  23. J. L. A. Chilla, and O. E. Martinez, “Direct determination of the amplitude and the phase of femtosecond light pulses,” Opt. Lett. 16, 39–41 (1991). [CrossRef] [PubMed]
  24. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  25. H. Cramer, Mathematical methods of statistics (Princeton Univ Pr, 1999).
  26. D. W. Allan, J. H. Shoaf, and D. Halford, “Statistics of Time and Frequency Data Analysis,” in “Time and Frequency: Theory and Fundamentals,” B. E. Blair, ed. (1974), pp. 151– +.
  27. Optical Glass (Schott Glass Technologies Inc., Duryea, Pennsylvania, 1984).
  28. N. Dudovich, D. Oron, and Y. Silberberg, “Coherent Transient Enhancement of Optically Induced Resonant Transitions,” Phys. Rev. Lett. 88, 123004 (2002). [CrossRef] [PubMed]
  29. K. Weber, and K. Niemax, “Self-broadening and shift of Doppler-free two-photon lines of Rb,” Opt. Commun. 31, 52–56 (1979). [CrossRef]
  30. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002). [CrossRef]
  31. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  32. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant Plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited