OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 687–697

High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation

Yunhui Zhu, Myungjun Lee, Mark A. Neifeld, and Daniel J. Gauthier  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 687-697 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noise-modulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated
(230.1150) Optical devices : All-optical devices

ToC Category:
Slow and Fast Light

Original Manuscript: October 18, 2010
Revised Manuscript: November 19, 2010
Manuscript Accepted: December 9, 2010
Published: January 5, 2011

Yunhui Zhu, Myungjun Lee, Mark A. Neifeld, and Daniel J. Gauthier, "High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation," Opt. Express 19, 687-697 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, and D. J. Gauthier, "Controlling the velocity of light pulses," Science 326, 1074-1077 (2009). [CrossRef] [PubMed]
  2. L. Thévenaz, "Slow and fast light in optical fibres," Nat. Photonics 2, 474-481 (2008). [CrossRef]
  3. M. González Herráez, K. Y. Song, and L. Thévenaz, "Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering," Appl. Phys. Lett. 87, 081113 (2005). [CrossRef]
  4. K. Y. Song, and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. 32, 217-219 (2007). [CrossRef] [PubMed]
  5. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, "Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb," Opt. Express 16, 8026-8032 (2008). [CrossRef] [PubMed]
  6. M. González Herráez, K. Y. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006). [CrossRef] [PubMed]
  7. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, "Broadband SBS slow light in an optical fiber," J. Lightwave Technol. 25, 201-206 (2007). [CrossRef]
  8. L. Yi, Y. Jaouen, W. Hu, Y. Su, and S. Bigo, "Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS," Opt. Express 15, 16972-16979 (2007). [CrossRef] [PubMed]
  9. A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp," Opt. Express 14, 8498-8505 (2006). [CrossRef] [PubMed]
  10. E. Cabrera-Granado, O. G. Calderon, S. Melle, and D. J. Gauthier, "Observation of large 10-Gb/s SBS slow light delay with low distortion using an optimized gain profile," Opt. Express 16, 16032-16042 (2008). [CrossRef] [PubMed]
  11. Y. Zhu, E. Cabrera-Granado, O. G. Calderon, S. Melle, Y. Okawachi, A. L. Gaeta, and D. J. Gauthier, "Competition between the modulation instability and stimulated Brillouin scattering in a broadband slow light device," J. Opt. 12, 104019 (2010). [CrossRef]
  12. N. A. Olsson, and J. P. Van Der Ziel, "Fibre Brillouin amplifier with electronically controlled bandwidth," Electron. Lett. 22, 488-490 (1986). [CrossRef]
  13. B. Zhang, L. Yan, L. Zhang, and A. E. Willner, "Multichannel SBS Slow Light Using Spectrally Sliced Incoherent Pumping," J. Lightwave Technol. 26, 3763-3769 (2008). [CrossRef]
  14. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Express 16, 2764-2777 (2008). [CrossRef] [PubMed]
  15. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046 (2005). [CrossRef]
  16. Z. Bo, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, "A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels," IEEE Photon. Technol. Lett. 19, 1081-1083 (2007). [CrossRef]
  17. A. Zadok, H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic, "Spectral shift and broadening of DFB lasers under direct modulation," IEEE Photon. Technol. Lett. 10, 1709 (1998). [CrossRef]
  18. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, "Distortion management in slow-light pulse delay," Opt. Express 13, 9995-10002 (2005). [CrossRef] [PubMed]
  19. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc. Am. B 22, 2378-2384 (2005). [CrossRef]
  20. R. W. Boyd, Nonlinear optics (Academic Press, San Diego, 2008), Ch. 9.
  21. R. W. Boyd, K. Rzaewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990). [CrossRef] [PubMed]
  22. A. Kobyakov, M. Sauer, and D. Chowdhury, "Stimulated Brillouin scattering in optical fibers," Adv. Opt. Photon. 2, 1-59 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited