OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 717–726

Etched beam splitters in InP/InGaAsP

Erik J. Norberg, John S. Parker, Steven C. Nicholes, Byungchae Kim, Uppiliappan Krishnamachari, and Larry A. Coldren  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 717-726 (2011)
http://dx.doi.org/10.1364/OE.19.000717


View Full Text Article

Enhanced HTML    Acrobat PDF (1131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An etched beam splitter (EBS) photonic coupler based on frustrated total internal reflection (FTIR) is designed, fabricated and characterized in the InP/InGaAsP material system. The EBS offers an ultra compact footprint (8x11 μm) and a complete range of bar/cross coupling ratio designs. A novel pre-etching process is developed to achieve sufficient depth of the etched coupling gaps. Fabricated EBS couplers demonstrate insertion loss between 1 and 2.6 dB with transmission (cross-coupling) 10%. The results show excellent agreement with 3D finite-difference time-domain (FDTD) modeling. The coupling of EBS has weak wavelength dependence in the C-band, making it suitable for wavelength division multiplexing (WDM) or other wide bandwidth applications. Finally, the EBS is integrated with active semiconductor optical amplifier (SOA) and phase-modulator components; using a flattened ring resonator structure, a channelizing filter tunable in both amplitude and center frequency is demonstrated, as well as an EBS coupled ring laser.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.1360) Optical devices : Beam splitters
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: October 26, 2010
Revised Manuscript: December 17, 2010
Manuscript Accepted: December 22, 2010
Published: January 5, 2011

Citation
Erik J. Norberg, John S. Parker, Steven C. Nicholes, Byungchae Kim, Uppiliappan Krishnamachari, and Larry A. Coldren, "Etched beam splitters in InP/InGaAsP," Opt. Express 19, 717-726 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-717


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.-H. Chen, J. Klamkin, S. C. Nicholes, L. A. Johansson, J. E. Bowers, and L. A. Coldren, “Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects,” Appl. Opt. 48(25), F68–F75 (2009). [CrossRef] [PubMed]
  2. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-Cascaded Semiconductor Microring Resonators for High-Order and Wide-FSR Filters,” J. Lightwave Technol. 20(5), 872–877 (2002). [CrossRef]
  3. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, V. Oliver King, Van, D. Sai Chu, M. Gill, M. S. Anthes-Washburn, Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  4. Y. Ma, S. Park, L. Wang, and S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12(5), 492–494 (2000). [CrossRef]
  5. Y. Shi, S. He, and S. Anand, “Ultracompact directional couplers realized in InP by utilizing feature size dependent etching,” Opt. Lett. 33(17), 1927–1929 (2008). [CrossRef] [PubMed]
  6. S. J. Choi, K. Djordjev, S. J. Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, and J. Connolly, “Microring resonator vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16(3), 828–830 (2004). [CrossRef]
  7. J. S. Osinski, C. E. Zah, R. Bhat, R. J. Contolini, E. D. Beebe, T. P. Lee, K. D. Cummings, and L. R. Harriott, “Miniature integrated optical Beam-Splitter in AlGaAs/GaAs ridge waveguides,” Electron. Lett. 23(21), 1156–1158 (1987). [CrossRef]
  8. L. Li, G. P. Nordin, J. M. English, and J. Jiang, “Small-area bends and beamsplitters for lowindex-contrast waveguides,” Opt. Express 11(3), 282–290 (2003). [CrossRef] [PubMed]
  9. B. Kim, and N. Dagli, “Compact Micro Resonators with Etched Beam Splitters and Total Internal Reflection Mirrors,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IWB.
  10. N. R. Huntoon, M. P. Christensen, D. L. MacFarlane, G. A. Evans, and C. S. Yeh, “Integrated photonic coupler based on frustrated total internal reflection,” Appl. Opt. 47(30), 5682–5690 (2008). [CrossRef] [PubMed]
  11. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54(7), 601–607 (1986). [CrossRef]
  12. Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90 ° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007). [CrossRef] [PubMed]
  13. B. Kim and N. Dagli, “Submicron Etched Beam Splitters Based on Total Internal Reflection in GaAs–AlGaAs Waveguides,” J. Lightwave Technol. 28(13), 1938–1943 (2010). [CrossRef]
  14. E. Norberg, J. Parker, U. Krishnamachari, R. Guzzon, and L. Coldren, InGaAsP/InP based Flattened Ring Resonators iwth Etched Beam Splitters,” in Conference on Integrated Photonics and Nanophotonics Research and Applications Nanophotonics, Technical Digest (CD) (Optical Society of America, 2009), paper IWB.
  15. U. Krishnamachari, S. Ristic, C.-H. Chen, L. Johansson, A. Ramaswamy, J. Klamkin, E. Norberg, J. Bowers, and L. Coldren, “InP/InGaAsP-Based Integrated 3-dB Trench Couplers for Ultra-Compact Coherent Receivers,” IEEE Photon. Technol. Lett. (to be published).
  16. R. H. Renard, “Total reflection: a new evaluation of the Goos–Hänchen shift,” J. Opt. Soc. Am. 54(10), 1190–1197 (1964). [CrossRef]
  17. J. Parker, E. Norberg, R. Guzzon, S. Nicholes, and L. Coldren, “High verticality InP/InGaAsP etching in Cl2/H2/Ar ICP for photonic integrated circuits,” J. Vac. Sci. Technol. B (to be published).
  18. S. Bouchoule, G. Patriarche, S. Guilet, L. Gatilova, L. Largeau, and P. Chabert, “Sidewall Passivation Assisted by a Silicon Coverplate during Cl2-H2 HBr Inductively Coupled Plasma Etching of InP for Photonic Devices,” J. Vac. Sci. Technol. B 26(2), 666–675 (2008). [CrossRef]
  19. S. Rommel, J.-H. Jang, W. Lu, G. Cueva, L. Zhou, I. Adesida, G. Pajer, R. Whaley, A. Lepore, Z. Schellanbarger, and J. H. Abeles, “Effect of H2 on the etch profile of InP/InGaAsP alloys in Cl2/Ar/H2 inductively coupled plasma reactive ion etching chemistriesfor photonic device fabrication,” J. Vac. Sci. Technol. B 20(4), 1327–1330 (2002). [CrossRef]
  20. E. Norberg, R. Guzzon, and L. Coldren, “Programmable Photonic Filters Fabricated with Deeply Etched Waveguides,” in Proceedings of IEEE Conference on Indium Phosphide and Related Materials, (IEEE Photonics Society, Newport beach, CA, 2009), pp. 163–166.
  21. E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: a quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005). [CrossRef]
  22. E. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable Photonic Lattice Filters in InGaAsP–InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010). [CrossRef]
  23. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Whiley-Interscience 1999), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited