OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 733–738

Gain and losses in THz quantum cascade laser with metal-metal waveguide

Michael Martl, Juraj Darmo, Christoph Deutsch, Martin Brandstetter, Aaron Maxwell Andrews, Pavel Klang, Gottfried Strasser, and Karl Unterrainer  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 733-738 (2011)
http://dx.doi.org/10.1364/OE.19.000733


View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupling of broadband terahertz pulses into metal-metal terahertz quantum cascade lasers is presented. Mode matched terahertz transients are generated on the quantum cascade laser facet of subwavelength dimension. This method provides a full overlap of optical mode and active laser medium. A longitudinal optical-phonon depletion based active region design is investigated in a coupled cavity configuration. Modulation experiments reveal spectral gain and (broadband) losses. The observed gain shows high dynamic behavior when switching from loss to gain around threshold and is clamped at total laser losses.

© 2011 OSA

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 12, 2010
Revised Manuscript: December 7, 2010
Manuscript Accepted: December 7, 2010
Published: January 5, 2011

Citation
Michael Martl, Juraj Darmo, Christoph Deutsch, Martin Brandstetter, Aaron Maxwell Andrews, Pavel Klang, Gottfried Strasser, and Karl Unterrainer, "Gain and losses in THz quantum cascade laser with metal-metal waveguide," Opt. Express 19, 733-738 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-733


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, “Phase-resolved measurements of stimulated emission in a laser,” Nature 449(7163), 698–701 (2007). [CrossRef] [PubMed]
  2. J. Kröll, J. Darmo, K. Unterrainer, S. S. Dhillon, C. Sirtori, X. Marcadet, and M. Calligaro, “Longitudinal spatial hole burning in terahertz quantum cascade lasers,” Appl. Phys. Lett. 91(16), 161108 (2007). [CrossRef]
  3. N. Jukam, S. S. Dhillon, Z. Y. Zhao, G. Duerr, J. Armijo, N. Sirmons, S. Hameau, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, and J. Tignon, “Gain Measurements of THz Quantum Cascade Lasers using THz Time-Domain Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 436–442 (2008). [CrossRef]
  4. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Terahertz time domain spectroscopy of phonon-depopulation based quantum cascade lasers,” Appl. Phys. Lett. 94(25), 251108 (2009). [CrossRef]
  5. J. Lloyd-Hughes, Y. L. Delley, G. Scalari, M. Fischer, V. Liverini, M. Beck, and J. Faist, “Spectroscopic determination of the doping and mobility of terahertz quantum cascade structures,” J. Appl. Phys. 106(9), 093104 (2009). [CrossRef]
  6. S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, “2.9 THz quantum cascade lasers operating up to 70 K in continuous wave,” Appl. Phys. Lett. 85(10), 1674 (2004). [CrossRef]
  7. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ=100µm using metal waveguide for mode confinement,” Appl. Phys. Lett. 83(11), 2124 (2003). [CrossRef]
  8. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94(13), 131105 (2009). [CrossRef]
  9. J. Lloyd-Hughes, G. Scalari, A. van Kolck, M. Fischer, M. Beck, and J. Faist, “Coupling terahertz radiation between sub-wavelength metal-metal waveguides and free space using monolithically integrated horn antennae,” Opt. Express 17(20), 18387–18393 (2009). [CrossRef] [PubMed]
  10. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  11. M. Martl, J. Darmo, D. Dietze, K. Unterrainer, and E. Gornik, “Terahertz waveguide emitter with subwavelength confinement,” J. Appl. Phys. 107(1), 013110 (2010). [CrossRef]
  12. S. S. Dhillon, S. Sawallich, N. Jukam, D. Oustinov, J. Madeo, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, and J. Tignon, “Integrated terahertz pulse generation and amplification in quantum cascade lasers,” Appl. Phys. Lett. 96(6), 061107 (2010). [CrossRef]
  13. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82(7), 1015 (2003). [CrossRef]
  14. Fabry-Perot resonances of QCL section A are apparent at f = 1.2 THz and f = 2.4 THz (corresponding to slightly smaller size of emitter which may be explained by underetching).
  15. D. Dietze, J. Darmo, and K. Unterrainer, “Guided Modes in Layered Semiconductor Terahertz Structures,” IEEE J. Quantum Electron. 46(5), 618–625 (2010). [CrossRef]
  16. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nature Phot. 3(12), 715–719 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited