OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 739–747

Improved approach for ultra-sensitive detection of NO

Yixian Qian and Huijuan Sun  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 739-747 (2011)
http://dx.doi.org/10.1364/OE.19.000739


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved approach has been developed for ultra-sensitive detection of the concentration of NO using Faraday Modulation spectrometry (FAMOS) combined with the strong electronic transition. By changing the modulating magnetic field attributing to linear absorption and refraction of gas sample, the polarized laser was rotated and absorbed by the complex refraction index of NO. We confirm the relation between the magnitudes of absorption and the optimum modulation magnetic field. Also, the accuracy and the precision of the technique have been evaluated at different pressures. It is shown that the system is capable of detecting NO concentration down to 0.34 ppb·m.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Spectroscopy

History
Original Manuscript: November 8, 2010
Revised Manuscript: December 16, 2010
Manuscript Accepted: December 17, 2010
Published: January 5, 2011

Citation
Yixian Qian and Huijuan Sun, "Improved approach for ultra-sensitive detection of NO," Opt. Express 19, 739-747 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld, and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998), p. 1326.
  2. Y. C. Hou, A. Janczuk, and P. G. Wang, “Current trends in the development of nitric oxide donors,” Curr. Pharm. Des. 5(6), 417–441 (1999). [PubMed]
  3. P. K. Barton and J. W. Atwater, “Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste,” J. Environ. Eng. 128(2), 137–150 (2002). [CrossRef]
  4. L. J. Ignarro, “Nitric oxide. A novel signal transduction mechanism for transcellular communication,” Hypertension 16(5), 477–483 (1990). [PubMed]
  5. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]
  6. R. M. Mihalcea, D. S. Baer, and R. K. Hanson, “A diode-laser absorption sensor system for combustion emission measurements,” Meas. Sci. Technol. 9(3), 327–338 (1998). [CrossRef]
  7. D. B. Oh and A. C. Stanton, “Measurement of nitric oxide with an antimonide diode laser,” Appl. Opt. 36(15), 3294–3297 (1997). [CrossRef] [PubMed]
  8. D. M. Sonnenfroh, W. T. Rawlins, M. G. Allen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers,” Appl. Opt. 40(6), 812–820 (2001). [CrossRef]
  9. D. Nelson, J. Shorter, J. McManus, and M. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75(2-3), 343–350 (2002). [CrossRef]
  10. S. C. Herndon, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. Jayne, R. C. Brown, R. C. Miake-Lye, I. Waitz, P. Silva, T. Lanni, K. Demerjian, and C. E. Kolb, “NO and NO2 emission ratios measured from in-use commercial aircraft during taxi and takeoff,” Environ. Sci. Technol. 38(22), 6078–6084 (2004). [CrossRef] [PubMed]
  11. P. K. Falcone, R. K. Hansson, and C. H. Kruger, “Tunable diode laser absorption measurements of nitric oxide in combustion gases,” Combust. Sci. Technol. 35(1), 81–99 (1983). [CrossRef]
  12. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection,” Appl. Opt. 43(11), 2257–2266 (2004). [CrossRef] [PubMed]
  13. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9(4), 545–562 (1998). [CrossRef]
  14. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  15. A. Y. S. Cheng and M. H. Chan, “Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong,” Appl. Spectrosc. 58(12), 1462–1468 (2004). [CrossRef] [PubMed]
  16. J. Shao, W. J. Zhang, X. M. Gao, L. X. Ning, and Y. Q. Yuan, “Absorption measurements for highly sensitive diode laser of CO2 near 1.3 μm at room temperature,” Chin. Phys. 14(3), 482–486 (2005). [CrossRef]
  17. S. Wagner, B. Fisher, J. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32(1), 839–846 (2009). [CrossRef]
  18. N. Yamazoe and K. Shimanoe, “New perspectives of gas sensor technology,” Sens. Actuators B Chem. 138(1), 100–107 (2009). [CrossRef]
  19. A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii, “Trace complex-molecule detection using near-IR diode lasers,” Appl. Phys. B 75(2-3), 203–214 (2002). [CrossRef]
  20. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, and W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry - Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).
  21. J. McManus, D. Nelson, S. Herndon, J. Shorter, M. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85(2-3), 235–241 (2006). [CrossRef]
  22. T. Fritsch, M. Horstjann, D. Halmer, P. Sabana, P. Hering, and M. Mürtz, “Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of 14NO and 15NO,” Appl. Phys. B 93(2-3), 713–723 (2008). [CrossRef]
  23. R. Gäbler and J. Lehmann, “Sensitive and isotope selective (14NO/15NO) online detection of nitric oxide by faraday-laser magnetic resonance spectroscopy,” Methods Enzymol. 396, 54–60 (2005). [CrossRef] [PubMed]
  24. D. M. Sonnenfroh and M. G. Allen, “Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-mum room-temperature diode laser,” Appl. Opt. 36(30), 7970–7977 (1997). [CrossRef]
  25. J. Shao, L. Lathdavong, P. Thavixay, and O. Axner, “Detection of nitric oxide at low ppb⋅m concentrations by differential absorption spectrometry using a fully diode-laser-based ultraviolet laser system,” J. Opt. Soc. Am. B 24(9), 2294–2306 (2007). [CrossRef]
  26. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72(12), 6602 (1980). [CrossRef]
  27. W. Bohle, J. Werner, D. Zeitz, A. Hinz, and W. Urban, “Vibration-rotation spectroscopy of open shell molecular ions,” Mol. Phys. 58(1), 85–95 (1986). [CrossRef]
  28. P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: a new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86(3), 1075–1080 (1999). [PubMed]
  29. H. Ganser, W. Urban, and A. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101(4), 545–550 (2003). [CrossRef]
  30. F. J. Legat, L. T. Jaiani, P. Wolf, M. Wang, R. Lang, T. Abraham, A. R. Solomon, C. A. Armstrong, J. D. Glass, and J. C. Ansel, “The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure,” Exp. Dermatol. 13(4), 242–250 (2004). [CrossRef] [PubMed]
  31. T. Le Barbu, I. Vinogradov, G. Durry, O. Korablev, E. Chassefiere, and J. Bertaux, “TDLAS a laser diode sensor for the in situ monitoring of H2O, CO2 and their isotopes in the Martian atmosphere,” Adv. Space Res. 38(4), 718–725 (2006). [CrossRef]
  32. S. Guo, J. Boyd, R. Sammynaiken, and M. C. Loewen, “Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1,” Biochem. Cell Biol. 86(3), 262–270 (2008). [CrossRef] [PubMed]
  33. D. W. Robinson, “Magnetic rotation spectrum of A2Σ+←X2Π transition in NO II,” J. Chem. Phys. 50(11), 5018 (1969). [CrossRef]
  34. K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110(19), 9492–9499 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited