OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 779–786

Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser

Ming Tang, Hiroaki Minamide, Yuye Wang, Takashi Notake, Seigo Ohno, and Hiromasa Ito  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 779-786 (2011)
http://dx.doi.org/10.1364/OE.19.000779


View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For developing a continuous-wave (CW) tunable Terahertz-wave (THz-wave) source using difference-frequency generation (DFG) in highly nonlinear optical crystals, we proposed and demonstrated a dual-wavelength fiber ring laser system operating around 1060 nm based on wideband chirped fiber Bragg gratings (CFBGs) and semiconductor optical amplifier (SOA). Thermo-induced phase shift along the CFBG produces a very sharp transmission spike therefore two lasing wavelengths with single longitudinal mode operation are oscillating simultaneously within the fiber ring cavity. Due to the inhomogeneous gain broadening property of SOA, the wavelength spacing of our dual-wavelength fiber laser can be continuously adjusted from 0.3 to 9.5 nm. By using this single emitter dual-wavelength fiber laser to pump an organic nonlinear DAST crystal, type-0 collinear phase matching of DFG process can be fulfilled and monochromatic THz wave ranging from 0.5 to 2 THz has been successfully generated.

© 2011 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 18, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 3, 2010
Published: January 5, 2011

Citation
Ming Tang, Hiroaki Minamide, Yuye Wang, Takashi Notake, Seigo Ohno, and Hiromasa Ito, "Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser," Opt. Express 19, 779-786 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  3. J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105(10), 102033 (2009). [CrossRef]
  4. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007). [CrossRef]
  5. T. Taniuchi and H. Nakanishi, “Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator,” J. Appl. Phys. 95(12), 7588–7591 (2004). [CrossRef]
  6. A. Godard, M. Raybaut, O. Lambert, J.-P. Faleni, M. Lefebvre, and E. Rosencher, “Cross-resonant optical parametric oscillators: study of and application to difference-frequency generation,” J. Opt. Soc. Am. B 22(9), 1966–1978 (2005). [CrossRef]
  7. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate,” Opt. Lett. 25(23), 1714–1716 (2000). [CrossRef]
  8. C.-S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I. C. Mayorga, A. Klehr, G. Erbert, and M. R. Hofmann, “New Two-Color Laser Concepts for THz Generation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 270–276 (2008). [CrossRef]
  9. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008). [CrossRef]
  10. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “The interaction of laser and photoconductor in a continuous-wave Terahertz photomixer,” IEEE J. Quantum Electron. 41(9), 1188–1196 (2005). [CrossRef]
  11. I. S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, “Optimization of photomixers and antennas for continuous-wave Terahertz emission,” IEEE J. Quantum Electron. 41(5), 717–728 (2005). [CrossRef]
  12. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007). [CrossRef]
  13. N. Kim, Y. A. Leem, J. H. Shin, C. W. Lee, S. P. Han, M. Y. Jeon, D. H. Lee, D. S. Yee, S. K. Noh, and K. H. Park, “Widely tunable dual-mode multisection laser diode for continuous-wave THz generation,” in Proceedings of 35th international conference on infrared, millimeter and terahertz waves (IRMMW-THz), (We-C3.1, Rome, Sep 5–10, 2010).
  14. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003). [CrossRef]
  15. D. Chen, H. Fu, W. Liu, Y. Wei, and S. He, “Dual-wavelength signle-longitudinal-mode erbium-doped fibre laser based on fibre Bragg grating pair and its application in microwave signal generation,” Electron. Lett. 44, 20083570 (2008).
  16. J. Liu, J. P. Yao, J. Yao, and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Technol. Lett. 16(4), 1020–1022 (2004). [CrossRef]
  17. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation,” Opt. Lett. 35(10), 1698–1700 (2010). [CrossRef] [PubMed]
  18. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004). [CrossRef] [PubMed]
  19. D. Liu, N. Q. Ngo, and S. C. Tjin, “A reconfigurable multiwavelength fiber laser with switchable wavelength channels and tunable wavelength spacing,” Opt. Commun. 281(18), 4715–4718 (2008). [CrossRef]
  20. N. Q. Ngo, D. Liu, S. C. Tjin, X. Dong, and P. Shum, “Thermally switchable and discretely tunable comb filter with a linearly chirped fiber Bragg grating,” Opt. Lett. 30(22), 2994–2996 (2005). [CrossRef] [PubMed]
  21. S. Gupta, T. Mizunami, and T. Shimomura, “Computer control of fiber Bragg grating spectral characteristics using a thermal head,” J. Lightwave Technol. 15(10), 1925–1928 (1997). [CrossRef]
  22. M. Tang, X. L. Tian, X. N. Lu, S. Fu, P.-P. Shum, Z. R. Zhang, M. Liu, Y. Cheng, and J. Liu, “Single-frequency 1060 nm semiconductor-optical-amplifier-based fiber laser with 40 nm tuning range,” Opt. Lett. 34(14), 2204–2206 (2009). [CrossRef] [PubMed]
  23. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1415 (2000). [CrossRef]
  24. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008). [CrossRef] [PubMed]
  25. M.-A. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photon. Technol. Lett. 21(1), 27–29 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited