OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 787–813

Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing

Anuj Dhawan, Michael Canva, and Tuan Vo-Dinh  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 787-813 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Optics at Surfaces

Original Manuscript: November 18, 2010
Revised Manuscript: December 12, 2010
Manuscript Accepted: December 16, 2010
Published: January 5, 2011

Anuj Dhawan, Michael Canva, and Tuan Vo-Dinh, "Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing," Opt. Express 19, 787-813 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  2. R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993). [CrossRef]
  3. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, Berlin, 2006).
  4. J. Čtyroký, J. Homola, and M. Skalský, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett. 33(14), 1246–1248 (1997). [CrossRef]
  5. R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1-3), 106–111 (2001). [CrossRef]
  6. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 541–566 (1997). [CrossRef] [PubMed]
  7. M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol. 5(2), 282–286 (1993). [CrossRef] [PubMed]
  8. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).
  9. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124(35), 10596–10604 (2002). [CrossRef] [PubMed]
  10. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  11. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003). [CrossRef]
  12. A. Dhawan and J. F. Muth, “Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix,” Nanotechnology 17(10), 2504–2511 (2006). [CrossRef] [PubMed]
  13. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4(5), 1143–1212 (1992). [CrossRef]
  14. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006).
  15. T. Vo-Dinh, ““Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in Anal. Chem. 17, 557–582 (1998). [CrossRef]
  16. M. Kerker, “Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids,” Acc. Chem. Res. 17(8), 271–277 (1984). [CrossRef]
  17. R. K. Chang, and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).
  18. B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays,” Anal. Chem. 73(1), 1–7 (2001). [CrossRef] [PubMed]
  19. M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. B. Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008). [CrossRef] [PubMed]
  20. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24(7), 2100–2105 (2009). [CrossRef]
  21. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17(19), 16505–16517 (2009). [CrossRef] [PubMed]
  22. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14(25), 12419–12431 (2006). [CrossRef] [PubMed]
  23. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” IEEE J. Lightwave Technol. 26(11), 1472–1478 (2008). [CrossRef]
  24. L. S. Live, O. R. Bolduc, and J.-F. Masson, “Propagating surface plasmon resonance on microhole arrays,” Anal. Chem. 82(9), 3780–3787 (2010). [CrossRef] [PubMed]
  25. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32(21), 3092–3094 (2007). [CrossRef] [PubMed]
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub?wavelength hole arrays,” Nature 391, 667-669 (1998). [CrossRef]
  27. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures based on Sub-Wavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8, 942-950 (2008). [CrossRef]
  28. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef]
  29. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  30. N. C. Lindquist, A. Lesuffleur, H. Im, and S.-H. Oh, “Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation,” Lab Chip 9(3), 382–387 (2009). [CrossRef] [PubMed]
  31. G. Zheng, X. Cui, and C. Yang, “Surface-wave-enabled darkfield aperture for background suppression during weak signal detection,” Proc. Natl. Acad. Sci. U.S.A. 107(20), 9043–9048 (2010). [CrossRef] [PubMed]
  32. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  33. A. Degiron,“The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005). [CrossRef]
  34. A. Wirgin, and T. Lopez-Rios, “Can surface-enhanced Raman scattering be caused by waveguide resonances?” Opt. Commun. 48(6), 416–420 (1984). [CrossRef]
  35. W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal Gratings,” Phys. Rev. 59, 12661–12666 (1999). [CrossRef]
  36. F. J. García-Vidal and L. Martın-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66(15), 155412 (2002). [CrossRef]
  37. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  38. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, “Surface Shape Resonances in Lamellar Metallic Gratings,” Phys. Rev. Lett. 81(3), 665–668 (1998). [CrossRef]
  39. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66(20), 205408 (2002). [CrossRef]
  40. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, and B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17(11), 2191–2195 (1999). [CrossRef]
  41. T. Lopez-Rios and A. Wirgin, “Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films,” Solid State Commun. 52(2), 197–201 (1984). [CrossRef]
  42. H. Lochbilher, “Surface Polaritons on gold-wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994). [CrossRef]
  43. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009). [CrossRef] [PubMed]
  44. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  45. S. Li, M. L. Pedano, S. H. Chang, C. A. Mirkin, and G. C. Schatz, “Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods,” Nano Lett. 10(5), 1722–1727 (2010). [CrossRef] [PubMed]
  46. A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, “Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures For Surface-Enhanced Raman Scattering (SERS),” Nanobiotechnol. 3(3-4), 1–8 (2007). [CrossRef]
  47. A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008). [CrossRef]
  48. J. B. Leen, P. Hansen, Y.-T. Cheng, and L. Hesselink, “Improved focused ion beam fabrication of near-field apertures using a silicon nitride membrane,” Opt. Lett. 33(23), 2827–2829 (2008). [CrossRef] [PubMed]
  49. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010). [CrossRef] [PubMed]
  50. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007). [CrossRef] [PubMed]
  51. M. J. Banholzer, L. Qin, J. E. Millstone, K. D. Osberg, and C. A. Mirkin, “On-wire lithography: synthesis, encoding and biological applications,” Nat. Protoc. 4(6), 838–848 (2009). [CrossRef] [PubMed]
  52. T. Gnanavel, Z. Saghi, M. A. M. Yajid, Y. Peng, B. J. Inkson, M. R. J. Gibbs, and G. Möbus, “Nanoscale sculpting of ferromagnetic structures by electron beam ablation,” J. Phys.: Conference Series 241, 012075 (2010). [CrossRef]
  53. V. Auzelyte, C. Dais, P. Farquet, D. Grützmacher, L. J. Heyderman, F. Luo, S. Olliges, C. Padeste, P. K. Sahoo, T. Thomson, A. Turchanin, C. David, and H. H. Solak, “Extreme ultraviolet interference lithography at the Paul Scherrer Institut,” J. Micro/Nanolith. 8(2), 021204 (2009). [CrossRef]
  54. A. Bezryadin and C. Dekker, “Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters,” J. Vac. Sci. Technol. B 15(4), 793–799 (1997). [CrossRef]
  55. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105(4), 1171–1196 (2005). [CrossRef] [PubMed]
  56. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983). [CrossRef]
  57. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 780–787 (1986). [CrossRef]
  58. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005). [CrossRef] [PubMed]
  59. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express 17(12), 9688–9703 (2009). [CrossRef] [PubMed]
  60. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited