OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 838–847

Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides

Jianwei Wang, Xiaowei Guan, Yingran He, Yaocheng Shi, Zhechao Wang, Sailing He, Petter Holmström, Lech Wosinski, Lars Thylen, and Daoxin Dai  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 838-847 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: Nano-scale power splitters based on Si hybrid plasmonic waveguides are designed by utilizing the multimode interference (MMI) effect as well as Y-branch structure. A three-dimensional finite-difference time-domain method is used for simulating the light propagation and optimizing the structural parameters. The designed 1×2 50:50 MMI power splitter has a nano-scale size of only 650 nm×530 nm. The designed Y-branch power splitter is also very small, i.e., about 900 nm×600 nm. The fabrication tolerance is also analyzed and it is shown that the tolerance of the waveguide width is much larger than±50 nm. The power splitter has a very broad band of over 500 nm. In order to achieve a variable power splitting ratio, a 2×2 two-mode interference coupler and an asymmetric Y-branch are used and the corresponding power splitting ratio can be tuned in the range of 97.1%:2.9%-1.7%:98.3% and 84%:16%-16%:84%, respectively. Finally a 1×4 power splitter with a device footprint of 1.9 μm×2.6 μm is also presented using cascaded Y-branches.

© 2011 OSA

OCIS Codes
(130.1750) Integrated optics : Components
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: October 22, 2010
Revised Manuscript: November 24, 2010
Manuscript Accepted: December 21, 2010
Published: January 6, 2011

Jianwei Wang, Xiaowei Guan, Yingran He, Yaocheng Shi, Zhechao Wang, Sailing He, Petter Holmström, Lech Wosinski, Lars Thylen, and Daoxin Dai, "Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides," Opt. Express 19, 838-847 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84(6), 852–854 (2004). [CrossRef]
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  3. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29(17), 1992–1994 (2004). [CrossRef] [PubMed]
  4. K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13(1), 256–266 (2005). [CrossRef] [PubMed]
  5. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005). [CrossRef]
  6. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  8. L. Liu, Z. H. Han, and S. L. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  9. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  12. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  13. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18(17), 17958–17966 (2010). [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  15. D. X. Dai, L. Yang, and S. L. He, “Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires,” J. Lightwave Technol. 26(6), 704–709 (2008). [CrossRef]
  16. D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46(7), 1126–1131 (2007). [CrossRef] [PubMed]
  17. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009). [CrossRef]
  18. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18(12), 12971–12979 (2010). [CrossRef] [PubMed]
  19. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18(11), 11728–11736 (2010). [CrossRef] [PubMed]
  20. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  21. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and application,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  22. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007). [CrossRef]
  23. B.-K. Yang, S.-Y. Shin, and D. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett. 21(7), 432–434 (2009). [CrossRef]
  24. S. Suzuki, T. Kitoh, Y. Inoue, Y. Yamada, Y. Hibino, K. Moriwaki, and M. Yanagisawa, “Integrated optic Y-branching waveguides with an asymmetric branching ratio,” Electron. Lett. 32(8), 735–736 (1996). [CrossRef]
  25. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008). [CrossRef] [PubMed]
  26. P. B. Johnson and R. W. Christy, “Optical constants of the Noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited