OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 861–869

Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector

Tao Ling, Sung-Liang Chen, and L. Jay Guo  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 861-869 (2011)
http://dx.doi.org/10.1364/OE.19.000861


View Full Text Article

Enhanced HTML    Acrobat PDF (1513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Smooth sidewall silicon micro-ring molds have been fabricated using resist reflow and thermal oxidation method. High Q factor polymer micro-ring resonators have been fabricated using these molds. Quality factors as high as 105 have been measured at telecommunication wavelength range. By carefully examining the different loss mechanisms in polymer micro-ring, we find that the surface scattering loss can be as low as 0.23 dB/cm, much smaller than the absorption loss of the polystyrene polymer used in our devices. When used as an ultrasound detector such a high Q polymer micro-ring device can achieve an acoustic sensitivity around 36.3 mV/kPa with 240 μW operating power. A noise equivalent pressure (NEP) is around 88 Pa over a bandwidth range of 1–75 MHz. We have improved the NEP by a factor of 3 compared to our previous best result.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(170.7170) Medical optics and biotechnology : Ultrasound
(230.5750) Optical devices : Resonators

ToC Category:
Sensors

History
Original Manuscript: October 27, 2010
Revised Manuscript: December 18, 2010
Manuscript Accepted: December 23, 2010
Published: January 6, 2011

Citation
Tao Ling, Sung-Liang Chen, and L. Jay Guo, "Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector," Opt. Express 19, 861-869 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Srinivasan, H. S. Baldwin, O. Aristizabal, L. Kwee, M. Labow, M. Artman, and D. H. Turnbull, “Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography,” Circulation 98(9), 912–918 (1998). [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  3. H. Nakano, Y. Matsuda, and S. Nagai, “Ultrasound detection by using a confocal Fabry-Perot interferometer with phase-modulated light,” Ultrasonic 37(3), 257–259 (1999). [CrossRef]
  4. S. Ashkenazi, Y. Hou, T. Buma, and M. O’Donnell, “Optoacoustic imaging using thin polymer etalon,” Appl. Phys. Lett. 86(13), 134102 (2005). [CrossRef]
  5. P. C. Beard and T. N. Mills, “Miniature optical fibre ultrasonic hydrophone using a Fabry-Perot polymer film interferometer,” Electron. Lett. 33(9), 801–803 (1997). [CrossRef]
  6. E. Z. Zhang and P. Beard, “Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection,” Proc. SPIE 5320, 222–229 (2004). [CrossRef]
  7. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2001). [CrossRef]
  8. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4069 (2002). [CrossRef]
  9. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004). [CrossRef]
  10. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Fabrication and coupling to planar high-Q silica disk microcavities,” Appl. Phys. Lett. 83(4), 797–799 (2003). [CrossRef]
  11. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-14-11366 . [CrossRef] [PubMed]
  12. P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]
  13. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonances,” Appl. Phys. Lett. 83(8), 527–529 (2003). [CrossRef]
  14. H. S. Sun, A. T. Chen, B. C. Olbricht, J. A. Davies, P. A. Sullivan, Y. Liao, and L. R. Dalton, “Direct electron beam writing of electro-optic polymer microring resonators,” Opt. Express 16(9), 6592–6599 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6592 . [CrossRef] [PubMed]
  15. I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006). [CrossRef] [PubMed]
  16. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-25-17424 . [CrossRef] [PubMed]
  17. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett. 92(19), 193509 (2008). [CrossRef]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  19. D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, “Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,” IEEE Photon. Technol. Lett. 17(11), 2352–2354 (2005). [CrossRef]
  20. C. Y. Chao and L. J. Guo, “Polymer Micro-ring Resonators Fabricated by Nanoimprint Technique,” J. Vac. Sci. Technol. B 20(6), 2862–2866 (2002). [CrossRef]
  21. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001). [CrossRef]
  22. H. C. Liu, Y. H. Lin, and W. Hsu, “Sidewall roughness control in advanced silicon etch process,” Microsyst. Technol. 10(1), 29–34 (2003). [CrossRef]
  23. C. Y. Chao and L. J. Guo, “Reduction of Surface Scattering Loss in Polymer Microrings Using Thermal-Reflow Technique,” IEEE Photon. Technol. Lett. 16(6), 1498–1500 (2004). [CrossRef]
  24. K. J. Vahala, Optical Microcavities (World Scientific 2004), Chapter 7.
  25. M. Oxborrow, “How to simulate the whispering gallery modes of dielectric microresonator in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J, 64520J-12 (2007). [CrossRef]
  26. R. K. Chang, and A. J. Campillo, Optical Processes in Microcavities (World scientific 1996), Chapter 6.
  27. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  28. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-5-1515 . [CrossRef] [PubMed]
  29. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer Science and Business Media 2009), Chapter 5.
  30. J. R. Schwesyg, T. Beckmann, A. S. Zimmermann, K. Buse, and D. Haertle, “Fabrication and characterization of whispering-gallery-mode resonators made of polymers,” Opt. Express 17(4), 2573–2578 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-4-2573 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited