OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 870–875

Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling

Daiji Fukuda, Go Fujii, Takayuki Numata, Kuniaki Amemiya, Akio Yoshizawa, Hidemi Tsuchida, Hidetoshi Fujino, Hiroyuki Ishii, Taro Itatani, Shuichiro Inoue, and Tatsuya Zama  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 870-875 (2011)
http://dx.doi.org/10.1364/OE.19.000870


View Full Text Article

Enhanced HTML    Acrobat PDF (977 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have realized a high-detection-efficiency photon number resolving detector at an operating wavelength of about 850 nm. The detector consists of a titanium superconducting transition edge sensor in an optical cavity, which is directly coupled to an optical fiber using an approximately 300-nm gap. The gap reduces the sensitive area and heat capacity of the device, leading to high photon number resolution of 0.42 eV without sacrificing detection efficiency or signal response speed. Wavelength dependent efficiency in fiber-coupled devices, which is due to optical interference between the fiber and the device, is also decreased to less than 1% in this configuration. The overall system detection efficiency is 98%±1% at wavelengths of around 850 nm, which is the highest value ever reported in this wavelength range.

© 2011 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

History
Original Manuscript: November 1, 2010
Revised Manuscript: December 2, 2010
Manuscript Accepted: December 23, 2010
Published: January 6, 2011

Citation
Daiji Fukuda, Go Fujii, Takayuki Numata, Kuniaki Amemiya, Akio Yoshizawa, Hidemi Tsuchida, Hidetoshi Fujino, Hiroyuki Ishii, Taro Itatani, Shuichiro Inoue, and Tatsuya Zama, "Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling," Opt. Express 19, 870-875 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-870


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3(12), 696–705 (2009). [CrossRef]
  2. K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor,” Opt. Express 18(8), 8107–8114 (2010). [CrossRef] [PubMed]
  3. N. Namekata, Y. Takahashi, G. Fujii, D. Fukuda, S. Kurimura, and S. Inoue, “Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength,” Nat. Photonics 4(9), 655–660 (2010). [CrossRef]
  4. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73(6), 735–737 (1998). [CrossRef]
  5. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. 83(4), 791–793 (2003). [CrossRef]
  6. K. D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66(15), 1998–2000 (1995). [CrossRef]
  7. D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall, “Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15(2), 575–578 (2005). [CrossRef]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  9. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, and T. Zama, “Titanium TES based photon number resolving detectors with 1 MHz counting rate and 65% quantum efficiency,” Proc. SPIE 7236, 7236C (2009).
  10. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “photon number resolving detection with high speed and high quantum effciency,” Metrologia 46(4), S288–S292 (2009). [CrossRef]
  11. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R. M. T. Damayanthi, H. Takahashi, S. Inoue, and M. Ohkubo, “High Speed Photon-Number Resolving Detector with Titanium Transition Edge Sensor,” J. Low Temp. Phys. 151(1-2), 100–105 (2008). [CrossRef]
  12. M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O’Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. Nam, S. N. Dorenbos, E. B. Ureña, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, “Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon,” Appl. Phys. Lett. 96(22), 221109 (2010). [CrossRef]
  13. E. A. Dauler, A. J. Kerman, B. S. Robinson, J. K. W. Yang, B. Voronov, G. Goltsman, S. A. Hamilton, and K. K. Berggren, “Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors,” J. Mod. Opt. 56(2), 364–373 (2009). [CrossRef]
  14. I. Vayshenker, J. H. Lehman, D. J. Livigni, X. Li, K. Amemiya, D. Fukuda, S. Mukai, S. Kimura, M. Endo, J. Morel, and A. Gambon, “Trilateral optical powermeter comparison between NIST, NMIJ/AIST, and METAS,” Appl. Opt. 46(5), 643–647 (2007). [CrossRef] [PubMed]
  15. I. Vayshenker, S. Yang, K. Amemiya, S. Mukai, and T. Zama, “Optical high-power nonlinearity comparison between the National Institute of Standards and Technology and the National Metrology Institute of Japan at 1480 nm,” Appl. Opt. 49(1), 32–36 (2010). [CrossRef] [PubMed]
  16. “Guide to the expression of uncertainty in measurement”, International Organization for Standardization, ISBN 92–67–101188–9 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited