OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 883–895

Linearized electrooptic microwave downconversion using phase modulation and optical filtering

Vincent R. Pagán, Bryan M. Haas, and T. E. Murphy  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 883-895 (2011)
http://dx.doi.org/10.1364/OE.19.000883


View Full Text Article

Enhanced HTML    Acrobat PDF (1262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate an electrooptic technique for relaying microwave signals over an optical fiber and downconverting the microwave signal to an intermediate frequency at the receiver. The system uses electrooptic phase modulation in the transmitter to impose the microwave signal on an optical carrier followed by re-modulation with a microwave local oscillator at the receiver. We demonstrate that by subsequently suppressing the optical carrier using a notch filter, the resulting optical signal can be directly detected to obtain a downconverted microwave signal. We further show that by simply controlling the amplitude of the microwave local oscillator, the system can be linearized to third-order, yielding an improvement in the dynamic range.

© 2011 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(230.0250) Optical devices : Optoelectronics
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics

History
Original Manuscript: November 9, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: December 24, 2010
Published: January 6, 2011

Citation
Vincent R. Pagán, Bryan M. Haas, and T. E. Murphy, "Linearized electrooptic microwave downconversion using phase modulation and optical filtering," Opt. Express 19, 883-895 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nat. Photonics 1, 319-330 (2007). [CrossRef]
  2. A. J. Seeds and K. J. Williams, "Microwave Photonics," J. Lightwave Technol. 24, 4628-4641 (2006). [CrossRef]
  3. L. M. Johnson and H. V. Roussell, "Reduction of intermodulation distortion in interferometric optical modulators," Opt. Lett. 13, 928-930 (1988). [CrossRef] [PubMed]
  4. S. K. Korotky and R. M. de Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas Comm. 8, 1377-1381 (1990). [CrossRef]
  5. M. L. Farwell, Z.-Q. Lin, E. Wooten, and W. S. C. Chang, "An Electrooptic Intensity Modulator with Improved Linearity," IEEE Photon. Technol. Lett. 3, 792-795 (1991). [CrossRef]
  6. M. Nazarathy, J. Berger, A. J. Ley, I. M. Levi, and Y. Kagan, "Progress in Externally Modulated AM CATV Transmission Systems," J. Lightwave Technol. 11, 82-105 (1993). [CrossRef]
  7. W. B. Bridges and J. H. Schaffner, "Distortion in Linearized Electrooptic Modulators," IEEE Trans. Microw. Theory Tech. 43, 2184-2197 (1995). [CrossRef]
  8. G. E. Betts and F. J. O’Donnell, "Microwave Analog Optical Links Using Suboctave Linearized Modulators," IEEE Photon. Technol. Lett. 8, 1273-1275 (1996). [CrossRef]
  9. Y. Chiu, B. Jalali, S. Garner, and W. Steier, "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links," IEEE Photon. Technol. Lett. 11, 48-50 (1999). [CrossRef]
  10. E. I. Ackerman, "Broad-Band Linearization of a Mach-Zehnder Electrooptic Modulator," IEEE Trans. Microw. Theory Tech. 47, 2271-2279 (1999). [CrossRef]
  11. B. M. Haas and T. E. Murphy, "A Simple, Linearized, Phase-Modulated Analog Optical Transmission System," IEEE Photon. Technol. Lett. 19, 729-731 (2007). [CrossRef]
  12. B. Masella, B. Hraimel, and X. Zhang, "Enhanced Spurious-Free Dynamic Range Using Mixed Polarization in Optical Single Sideband Mach-Zehnder Modulator," J. Lightwave Technol. 27, 3034-3041 (2009). [CrossRef]
  13. T. S. Tan, R. L. Jungerman, and S. S. Elliott, "Optical Receiver and Modulator Frequency Response Measurement with a Nd:YAG Ring Laser Heterodyne Technique," IEEE Trans. Microw. Theory Tech. 37, 1217-1222 (1989). [CrossRef]
  14. A. K. M. Lam, M. Fairburn, and N. A. F. Jaeger, "Wide-Band Electrooptic Intensity Modulator Frequency Response Measurement Using an Optical Heterodyne Down-Conversion Technique," IEEE Trans. Microw. Theory Tech. 54, 240-246 (2006). [CrossRef]
  15. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-Optical Mixing in LiNbO3 Modulators," IEEE Trans. Microw. Theory Tech. 41, 2383-2391 (1993). [CrossRef]
  16. A. C. Lindsay, G. A. Knight, and S. T. Winnall, "Photonic Mixers for Wide Bandwidth RF Receiver Applications," IEEE Trans. Microw. Theory Tech. 43, 2311-2317 (1995). [CrossRef]
  17. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, "A Photonic-Link Millimeter Wave Mixer Using Cascaded Optical Modulators and Harmonic Carrier Generation," IEEE Photon. Technol. Lett. 8, 1166-1168 (1996). [CrossRef]
  18. R. Helkey, J. C. Twichell, and C. CoxIII, "A Down-Conversion Optical Link with RF Gain," J. Lightwave Technol. 15, 956-961 (1997). [CrossRef]
  19. K.-I. Kitayama and R. A. Griffin, "Optical Downconversion from Millimeter-Wave to IF-Band Over 50-km-Long Optical Fiber Link Using an Electroabsorption Modulator," IEEE Photon. Technol. Lett. 11, 287-289 (1999). [CrossRef]
  20. F. Zeng and J. Yao, "All-Optical Microwave Mixing and Bandpass Filtering in a Radio-Over-Fiber Link," IEEE Photon. Technol. Lett. 17, 899-901 (2005). [CrossRef]
  21. Y. Le Guennec, G. Maury, J. Yao, and B. Cabon, "New Optical Microwave Up-Conversion Solution in Radio-Over-Fiber Networks for 60-GHz Wireless Applications," J. Lightwave Technol. 24, 1277-1282 (2006). [CrossRef]
  22. Y. Li, D. Yoo, P. Herczfeld, A. Rosen, A. Madjar, and S. Goldwasser, "Receiver for coherent fiber-optic link with high dynamic range and low noise figure," in "Proceedings of Topical Meeting on Microwave Photonics," (2005).
  23. V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase Modulation With Interferometric Detection as an Alternative to Intensity Modulation With Direct Detection for Analog-Photonic Links," IEEE Trans. Microw. Theory Tech. 55, 1978-1985 (2007). [CrossRef]
  24. A. Ramaswamy, L. A. Johansson, J. Klamkin, H.-F. Chou, C. Sheldon, M. J. Rodwell, L. A. Coldren, and J. E. Bowers, "Integrated Coherent Receivers for High-Linearity Microwave Photonic Links," J. Lightwave Technol. 26, 209-216 (2008). [CrossRef]
  25. T. R. Clark and M. L. Dennis, "Coherent Optical Phase-Modulation Link," IEEE Photon. Technol. Lett. 19, 1206-1208 (2007). [CrossRef]
  26. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator," J. Lightwave Technol. 23, 2687-2695 (2005). [CrossRef]
  27. H. Chi, X. Zou, and J. Yao, "Analytical Models for Phase-Modulation-Based Microwave Photonic Systems With Phase Modulation to Intensity Modulation Conversion Using a Dispersive Device," J. Lightwave Technol. 27, 511-521 (2009). [CrossRef]
  28. B. Chen, S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and efficiency improvement of fiber-optic links using FBG," J. Electromagn. Waves Appl. 23, 161-170 (2009). [CrossRef]
  29. R. D. Esman and K. J. Williams, "Wideband Efficiency Improvement of Fiber Optic Systems by Carrier Subtraction," IEEE Photon. Technol. Lett. 7, 218-220 (1995). [CrossRef]
  30. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, "Transmission Improvement in Fiber Wireless Links Using Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 190-192 (2005). [CrossRef]
  31. A. R. Chraplyvy, R. W. Tkach, L. L. Buhl, and R. C. Alferness, "Phase Modulation to Amplitude Modulation Conversion of CW Laser Light in Optical Fibres," Electron. Lett. 22, 409-411 (1986). [CrossRef]
  32. A. F. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, "Chromatic Dispersion Limitations in Coherent Lightwave Transmission Systems," J. Lightwave Technol. 6, 704-709 (1988). [CrossRef]
  33. U. Gliese, S. Nørskov, and T. N. Nielsen, "Chromatic Dispersion in Fiber-Optic Microwave and Millimeter-Wave Links," IEEE Trans. Microw. Theory Tech. 44, 1716-1724 (1996). [CrossRef]
  34. G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming Chromatic-Dispersion Effects in Fiber-Wireless Systems Incorporating External Modulators," IEEE Trans. Microw. Theory Tech. 45, 1410-1415 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited