OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 896–905

Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane

Yi-Hao Pai and Gong-Ru Lin  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 896-905 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole−1 and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

© 2011 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(310.1860) Thin films : Deposition and fabrication
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 23, 2010
Revised Manuscript: August 13, 2010
Manuscript Accepted: August 14, 2010
Published: January 7, 2011

Yi-Hao Pai and Gong-Ru Lin, "Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane," Opt. Express 19, 896-905 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lopez, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80, 1637–1639 (2002). [CrossRef]
  2. S. Kim, M. C. Kim, S. H. Choi, K. J. Kim, H. N. Hwang, and C. C. Hwang, “Size dependence of Si 2p core-level shift at Si nanocrystal/SiO2 interfaces,” Appl. Phys. Lett. 91(10), 103113 (2007). [CrossRef]
  3. C. H. Lin, S. C. Lee, and Y. F. Chen, “Strong room-temperature photoluminescence of hydrogenated amorphous-silicon oxide and its correlation to porous silicon,” Appl. Phys. Lett. 63(7), 902–904 (1993). [CrossRef]
  4. F. Baumann, B. Deubzer, M. Geck, J. Dauth, S. Sheiko, and M. Schmidt, “Soluble organosilicon micronetworks with spatially confined reaction sites,” Adv. Mater. 9(12), 955–958 (1997). [CrossRef]
  5. Q. Cheng, S. Xu, and K. Ostrikov, “Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas,” Acta Mater. 58(2), 560–569 (2010). [CrossRef]
  6. Q. Cheng, S. Xu, S. Huang, and K. Ostrikov, “Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas,” Cryst. Growth Des. 9(6), 2863–2867 (2009). [CrossRef]
  7. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 2547–2551 (2008). [CrossRef]
  8. W. C. Yoo and J. K. Lee, “Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes,” Adv. Mater. 16(13), 1097–1101 (2004). [CrossRef]
  9. R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vazquez, and K. Hjort, “Fabrication of well-ordered high-aspect-ratio nanopore arrays in TiO2 single crystals,” Nano Lett. 6(5), 1065–1068 (2006). [CrossRef]
  10. A. Johansson, E. Widenkvist, J. Lu, M. Boman, and U. Jansson, “Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template,” Nano Lett. 5(8), 1603–1606 (2005). [CrossRef] [PubMed]
  11. Y. C. Chen, C. Y. Chen, N. H. Tai, Y. C. Lee, S. J. Lin, and I. N. Lin, “Characteristics of ultra-nano-crystal line diamond films grown on the porous anodic alumina template,” Diamond Relat. Mater. 15(2–3), 324–328 (2006). [CrossRef]
  12. C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20(6), 428–430 (2008). [CrossRef]
  13. T. Sugino, C. Kimura, and T. Yamamoto, “Electron field emission from boron-nitride nanofilms,” Appl. Phys. Lett. 80(19), 3602–3604 (2002). [CrossRef]
  14. T. Sugino, S. Kawasaki, K. Tanioka, and J. Shirafuji, “Electron emission from boron nitride coated Si field emitters,” Appl. Phys. Lett. 71(18), 2704–2706 (1997). [CrossRef]
  15. G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008). [CrossRef]
  16. G.-R. Lin, C. J. Lin, and H. C. Kuo, “Improving carrier transport and light emission in a silicon-nanocrystal based MOS light-emitting diode on silicon nanopillar array,” Appl. Phys. Lett. 91(9), 093122 (2007). [CrossRef]
  17. X. Wu, X. Zhong, and K. Ostrikov, “Nanopore processing in dielectric materials and dielectric template assisted nanoarray synthesis: Using pulsed bias to enhance process throughput and precision,” Appl. Phys. Lett. 92(22), 223104 (2008). [CrossRef]
  18. K. Ostrikov and A. B. Murphy, “Plasma-aided nanofabrication: where is the cutting edge?” J. Phys. D Appl. Phys. 40(8), 2223–2241 (2007). [CrossRef]
  19. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993). [CrossRef] [PubMed]
  20. C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2,” Appl. Phys. Lett. 82(10), 1595–1597 (2003). [CrossRef]
  21. Seminar of American Society for Metals, “Diffusion,” Metals Parks, Ohio 1–23(1972).
  22. L. A. Nesbit, “Annealing characteristic of Si-rich SiO2-films,” Appl. Phys. Lett. 46(1), 38–40 (1985). [CrossRef]
  23. S. Wang, Fundamentals of Semiconductor Theory and Device Physics, (Prentice-Hall Inc., 1989) pp. 62–63.
  24. Y. H. Pai and G.-R. Lin, “In situ synthesis of scalable metallic nanodots in electron microscope,” J. Electrochem. Soc. 157(2), E13–E18 (2010). [CrossRef]
  25. A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996). [CrossRef]
  26. A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals,” Science 256(5062), 1425–1427 (1992). [CrossRef] [PubMed]
  27. A. N. Goldstein, “The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors,” Appl. Phys. A: Mater. Sci. Process. 62(1), 33–37 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited