OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 906–912

Optical coupling and splitting with two parallel waveguide tapers

S. H. Tao  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 906-912 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (862 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coupling and splitting device comprising a width taper and a spatial-modulated subwavelength grating waveguide (SSGW) is proposed. The width taper is a waveguide with increasing width and the SSGW is a waveguide grating whose width and thickness are constant but the filling factor increases along the light propagation. Thus, the effective index of the subwavelength grating increases according to the effective medium theory. Light of orthogonal polarizations from a single-mode fiber can be coupled efficiently with the two parallel tapers. Furthermore, the coupled lights of orthogonal polarizations in the two tapers can be further split with connecting bent waveguides. Fabrication of the device is fully compatible with current complementary metal oxide semiconductor technology.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(230.5440) Optical devices : Polarization-selective devices
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Optical Devices

Original Manuscript: July 27, 2010
Revised Manuscript: December 2, 2010
Manuscript Accepted: December 15, 2010
Published: January 7, 2011

S. H. Tao, "Optical coupling and splitting with two parallel waveguide tapers," Opt. Express 19, 906-912 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  2. Z. Lu and D. W. Prather, “Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices,” Opt. Lett. 29(15), 1748–1750 (2004). [CrossRef] [PubMed]
  3. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83(14), 2757 (2003). [CrossRef]
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  6. V. Nguyen, T. Montalbo, C. Manolatou, A. Agarwal, C. Y. Hong, J. Yasaitis, L. C. Kimerling, and J. Michel, “Silicon-based highly-efficient fiber-to-waveguide coupler for high index contrast systems,” Appl. Phys. Lett. 88(8), 081112 (2006). [CrossRef]
  7. B. Luyssaert, P. Vandersteegen, D. Taillaert, P. Dumon, W. Bogaerts, P. Bienstman, D. Van Thourhout, V. Wiaux, S. Beckx, and R. Baets, “A compact photonic horizontal spot-size converter realized in silicon-on-insulator,” IEEE Photon. Technol. Lett. 17(1), 73–75 (2005). [CrossRef]
  8. J. H. Schmid, B. Lamontagne, P. Cheben, A. Delâge, S. Janz, A. Densmore, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “Mode Converters for Coupling to High Aspect Ratio Silicon-on-Insulator Channel Waveguides,” IEEE Photon. Technol. Lett. 19(11), 855–857 (2007). [CrossRef]
  9. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3555 . [CrossRef] [PubMed]
  10. S. H. Tao, J. F. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler,” Opt. Express 16(25), 20803–20808 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-20803 . [CrossRef] [PubMed]
  11. P. Cheben, D.-X. Xu, S. Janz, and A. Densmore, “Subwavelength waveguide grating for mode conversion and light coupling in integrated optics,” Opt. Express 14(11), 4695–4702 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4695 . [CrossRef] [PubMed]
  12. M. R. Watts, M. Qi, T. Barwicz, L. Socci, P. T. Rakich, E. P. Ippen, H. I. Smith, H. A. Haus, “Towards integrated polarization diversity: design, fabrication, and characterization of integrated polarization splitters and rotators,” OFC2005 Technical Digest PDP11 (2005).
  13. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-7-4872 . [CrossRef] [PubMed]
  14. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, “A Compact two-dimensional grating coupler used as a polarization splitter,” IEEE Photon. Technol. Lett. 15(9), 1249–1251 (2003). [CrossRef]
  15. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12401 . [CrossRef] [PubMed]
  16. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and O. Beom-Hoan, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72–74 (2003). [CrossRef]
  17. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15(7), 1843–1851 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited