OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 923–932

High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber

Xiang Peng, Michael Mielke, and Timothy Booth  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 923-932 (2011)
http://dx.doi.org/10.1364/OE.19.000923


View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate high average power, high energy 1.55 μm ultra-short pulse (<1 ps) laser delivery using helium-filled and argon-filled large mode area hollow core photonic band-gap fibers and compare relevant performance parameters. The ultra-short pulse laser beam—with pulse energy higher than 7 μJ and pulse train average power larger than 0.7 W—is output from a 2 m long hollow core fiber with diffraction limited beam quality. We introduce a pulse tuning mechanism of argon-filled hollow core photonic band-gap fiber. We assess the damage threshold of the hollow core photonic band-gap fiber and propose methods to further increase pulse energy and average power handling.

© 2011 OSA

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 5, 2010
Revised Manuscript: November 29, 2010
Manuscript Accepted: December 24, 2010
Published: January 7, 2011

Citation
Xiang Peng, Michael Mielke, and Timothy Booth, "High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber," Opt. Express 19, 923-932 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-923


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond, and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  2. F. Dausinger, H. Hugel, and V. Konov, “Micro-machining with ultrashort laser pulses: from basic understanding to technical applications,” Proc. SPIE 5147, 106–115 (2003). [CrossRef]
  3. A. Ancona, C. Jauregui, S. Doring, F. Roser, J. Limpert, S. Nolte, and A. Tunnermann, “Ultrashort pulse laser drilling of metals using a high repetition rate, high average power fiber CPA system,” Proc. SPIE 7203, 720311, 720311-9 (2009). [CrossRef]
  4. M. Mielke, D. Gaudiosi, K. Kim, M. Greenberg, X. Gu, R. Cline, X. Peng, M. Slovick, N. Allen, M. Manning, M. Ferrel, N. Prachayaamorn, and S. Sapers, “Ultrafast fiber laser platform for advanced materials processing,” J. Laser. Micro/Nanoeng. 5, 53–58 (2010).
  5. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17(3), 1240–1247 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-3-1240 . [CrossRef] [PubMed]
  6. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003). [CrossRef]
  7. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, V. I. Beloglazov, N. B. Skibina, A. V. Shcherbakov, E. Wintner, and A. M. Zheltikov, “Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre,” J. Phys. D Appl. Phys. 36(12), 1375–1381 (2003). [CrossRef]
  8. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-9-13-748 . [CrossRef] [PubMed]
  9. G. Humbert, J. C. Knight, G. Bouwmans, P. St. J. Russell, D. P. Williams, P. J. Roberts, and B. J. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-8-1477 . [CrossRef] [PubMed]
  10. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45(26), 6736–6740 (2006). [CrossRef] [PubMed]
  11. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005). [CrossRef] [PubMed]
  12. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650 (1997). [CrossRef]
  13. C. Brée, A. Demircan, and G. Steinmeyer, “Method for Computing the Nonlinear Refractive Index via Keldysh Theory,” IEEE J. Quantum Electron. 46(4), 433–437 (2010). [CrossRef]
  14. H. Garcia, A. M. Johnson, F. A. Oguama, and S. Trivedi, “New approach to the measurement of the nonlinear refractive index of short (<25 m) lengths of silica and erbium-doped fibers,” Opt. Lett. 28(19), 1796–1798 (2003). [CrossRef] [PubMed]
  15. R. David, Lide, Handbook of chemistry and physics 78th Edition, (CRC Press, 1997).
  16. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001), Chap. 4.
  17. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  18. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers,” Opt. Express 15(6), 3507–3512 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-6-3507 . [CrossRef] [PubMed]
  19. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97(2), 369–373 (2009). [CrossRef]
  20. M. Mielke, T. Booth, and X. Peng, “Using hollow core plastic fiber to deliver ultrashort pulse laser beams,” NASA Tech. Memo. 33, 4a–6a (2009).
  21. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef] [PubMed]
  22. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13(16), 6153–6159 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-16-6153 . [CrossRef] [PubMed]
  23. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997). [CrossRef]
  24. D. G. Ouzounov, C. J. Hensley, A. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, “Nonlinear properties of hollow-core band-gap fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CMM3. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CMM3 .
  25. D. R. Lide, Handbook of Chemistry and Physics78th Edition (CRC Press, LLC 1997), Chap. 10.
  26. http://www.rp-photonics.com/laser_induced_breakdown.html .
  27. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-4-717 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited