OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 933–945

Optical Eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 933-945 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a mathematically rigorous technique which facilitates the optimization of various optical properties of electromagnetic fields in free space and including scattering interactions. The technique exploits the linearity of electromagnetic fields along with the quadratic nature of the intensity to define specific Optical Eigenmodes (OEi) that are pertinent to the interaction considered. Key applications include the optimization of the size of a focused spot, the transmission through sub-wavelength apertures, and of the optical force acting on microparticles. We verify experimentally the OEi approach by minimising the size of a focused optical field using a superposition of Bessel beams.

© 2011 Optical Society of America

OCIS Codes
(090.1970) Holography : Diffractive optics
(120.7000) Instrumentation, measurement, and metrology : Transmission
(140.7010) Lasers and laser optics : Laser trapping
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: October 12, 2010
Revised Manuscript: December 24, 2010
Manuscript Accepted: January 3, 2011
Published: January 7, 2011

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, "Optical Eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions," Opt. Express 19, 933-945 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Cohen-Tannoudji, Quantum Mechanics (Wiley, New York, 1977).
  2. M. Kac, “Can one hear the shape of a drum?” Am. Math. Mon. 73, 1–23 (1966). [CrossRef]
  3. A. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2, 211 (1993). [CrossRef]
  4. P. Bienstman, and R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33, 327–341 (2001). [CrossRef]
  5. J. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P. Knipp, and T. Reinecke, “Size dependence of confined optical modes in photonic quantum dots,” Phys. Rev. Lett. 78, 378–381 (1997). [CrossRef]
  6. H. Kogelnik, and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966). [CrossRef] [PubMed]
  7. J. Barton, D. Alexander, and S. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4603 (1989). [CrossRef]
  8. M. Mazilu, “Spin and angular momentum operators and their conservation,” J. Opt. A: Pure Appl. Opt. 11, 094005 (2009). [CrossRef]
  9. F. García-Vidal, E. Moreno, J. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  10. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919 (1998). [CrossRef] [PubMed]
  11. M. R. Dennis, R. P. King, B. Jack, K. O. Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 118 (2010). [CrossRef]
  12. L. C. Thomson, G. Whyte, M. Mazilu, and J. Courtial, “Simulated holographic three-dimensional intensity shaping of evanescent-wave fields,” J. Opt. Soc. Am. B 25, 849–853 (2008). [CrossRef]
  13. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  14. T. Sales, and G. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582–584 (1997). [CrossRef] [PubMed]
  15. M. Berry, “Faster than Fourier,” in Quantum Coherence and Reality; in celebration of the 60th Birthday of Yakir Aharonov, J. S. Anandan and J. L. Safko, eds., (World Scientific, Singapore, 1994), pp. 55–65. [PubMed]
  16. M. R. Dennis, A. C. Hamilton, and J. Courtial, “Superoscillation in speckle patterns,” Opt. Lett. 33, 2976–2978 (2008). [PubMed]
  17. J. Durnin, “Exact solutions for nondiffracting beams. I. The Scalar Theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  18. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order Bessel light beam,” J. Opt. B 4, S82–S89 (2002). [CrossRef]
  19. B. Richards, and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic Systems,” Proc. R. Soc. Lond. A 253, 357–379 (1959).
  20. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913 (2007).
  21. D. Malacara, Optical Shop Testing (Wiley-Interscience, 1992), 2nd ed.
  22. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008). [CrossRef]
  23. I. Vellekoop, and A. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
  24. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited