OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 981–993

All-optical Fresnel lens in coherent media: controlling image with image

L. Zhao, Wenhui Duan, and S. F. Yelin  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 981-993 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically explore an all-optical method for generating tunable diffractive Fresnel lenses in coherent media based on electromagnetically induced transparency. In this method, intensity-modulated images in coupling light fields can pattern the coherent media to induce the desired modulo-2π quadratic phase profiles for the lenses to diffract probe light fields. We characterize the focusing and imaging properties of the induced lenses. In particular, we show that the images in coupling fields can flexibly control the images in probe fields by diffraction, where large focal length tunability from 1 m to infinity and high output (∼ 88% diffraction efficiency) can be achieved. Additionally, we also find that the induced Fresnel lenses can be rapidly modulated with megahertz refresh rates using image-bearing square pulse trains in coupling fields. Our proposed lenses may find a wide range of applications for multimode all-optical signal processing in both the classical and quantum regimes.

© 2011 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(230.1150) Optical devices : All-optical devices
(270.1670) Quantum optics : Coherent optical effects
(050.1965) Diffraction and gratings : Diffractive lenses

Original Manuscript: November 9, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 10, 2010
Published: January 7, 2011

L. Zhao, Wenhui Duan, and S. F. Yelin, "All-optical Fresnel lens in coherent media: controlling image with image," Opt. Express 19, 981-993 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Patel, and K. Rastani, "Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays," Opt. Lett. 16, 532-534 (1991). [CrossRef] [PubMed]
  2. Y.-H. Fan, H. Ren, and S.-T. Wu, "Switchable Fresnel lens using polymer-stabilized liquid crystals," Opt. Express 11, 3080-3086 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-23-3080. [CrossRef] [PubMed]
  3. L.-C. Lin, H.-C. Jau, T.-H. Lin, and A. Y.-G. Fuh, "Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal," Opt. Express 15, 2900-2906 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-2900. [CrossRef] [PubMed]
  4. M. Ferstl, and A.-M. Frisch, "Static and dynamic Fresnel zone lenses for optical interconnections," J. Mod. Opt. 43, 1451-1462 (1996). [CrossRef]
  5. G. Li, D. L. Mathine, P. Valley, P. Äyräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, "Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications," Proc. Natl. Acad. Sci. U.S.A. 103, 6100-6104 (2006). [CrossRef] [PubMed]
  6. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, "Tunable-focus flat liquid-crystal diffractive lens," Opt. Lett. 35, 336-338 (2010). [CrossRef] [PubMed]
  7. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  8. M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003). [CrossRef]
  9. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Spatial Consequences of Electromagnetically Induced Transparency: Observation of Electromagnetically Induced Focusing," Phys. Rev. Lett. 74, 670-673 (1995). [CrossRef] [PubMed]
  10. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Electromagnetically-induced focusing," Phys. Rev. A 53, 408-415 (1996). [CrossRef] [PubMed]
  11. M. Mitsunaga, M. Yamashita, and H. Inoue, "Absorption imaging of electromagnetically induced transparency in cold sodium atoms," Phys. Rev. A 62, 013817 (2000). [CrossRef]
  12. L. Zhao, T. Wang, and S. F. Yelin, "Two-dimensional all-optical spatial light modulation with high speed in coherent media," Opt. Lett. 34, 1930-1932 (2009). [CrossRef] [PubMed]
  13. M. Fleischhauer, and M. O. Scully, "Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence," Phys. Rev. A 49, 1973-1986 (1994). [CrossRef] [PubMed]
  14. J. Gea-Banacloche, Y.-Q. Li, S. Jin, and M. Xiao, "Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment," Phys. Rev. A 51, 576-584 (1995). [CrossRef] [PubMed]
  15. R. P. Feynman, and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  17. Y.-Q. Ling, and M. Xiao, "Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms," Phys. Rev. A 51, R2703-R2706 (1995). [CrossRef]
  18. D. A. Steck, "Rubidium 87 D Line Data," available online at http://steck.us/alkalidata (revision 2.1.2, 12 August 2009).
  19. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).
  20. T. Stone, and N. George, "Hybrid diffractive-refractive lenses and achromats," Appl. Opt. 27, 2960-2971 (1988). [CrossRef] [PubMed]
  21. V. K. Ingle, and J. G. Proakis, Digital Signal Processing Using MATLAB V.4 (PWS Publishing Company, Boston, MA, 1997).
  22. S. E. Harris, and Z.-F. Luo, "Preparation energy for electromagnetically induced transparency," Phys. Rev. A 52, R928-R931 (1995). [CrossRef] [PubMed]
  23. H. Schmidt, and R. J. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl. Phys. Lett. 76, 3173-3175 (2000). [CrossRef]
  24. M. Fleischhauer, and A. S. Manka, "Propagation of laser pulses and coherent population transfer in dissipative three-level systems: An adiabatic dressed-state picture," Phys. Rev. A 54, 794-803 (1996). [CrossRef] [PubMed]
  25. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, "Optical phased array technology," Proc. IEEE 84, 268-298 (1996). [CrossRef]
  26. S. Knappe, L. Hollberg, and J. Kitching, "Dark-line atomic resonances in submillimeter structures," Opt. Lett. 29, 388-390 (2004). [CrossRef] [PubMed]
  27. A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark-line atomic resonances in a submicron-thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006). [CrossRef]
  28. Y. W. Yi, H. G. Robinson, S. Knappe, J. E. MacLennan, C. D. Jones, C. Zhu, N. A. Clark, and J. Kitching, "Method for characterizing self-assembled monolayers as antirelaxation wall coatings for alkali vapor cells," J. Appl. Phys. 104, 023534 (2008). [CrossRef]
  29. S. J. Seltzera, and M. V. Romalis, "High-temperature alkali vapor cells with antirelaxation surface coatings," J. Appl. Phys. 106, 114905 (2009). [CrossRef]
  30. M. Meucci, E. Mariotti, P. Bicchi, C. Marinelli, and L. Moi, "Light-Induced Atom Desorption," Europhys. Lett. 25, 639-643 (1994). [CrossRef]
  31. A. Bogi, C. Marinelli, A. Burchianti, E. Mariotti, L. Moi, S. Gozzini, L. Marmugi, and A. Lucchesini, "Full control of sodium vapor density in siloxane-coated cells using blue LED light-induced atomic desorption," Opt. Lett. 34, 2643-2645 (2009). [CrossRef] [PubMed]
  32. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, "High densities of cold atoms in a dark spontaneous-force optical trap," Phys. Rev. Lett. 70, 2253-2256 (1993). [CrossRef] [PubMed]
  33. I. Novikova, A. B. Matsko, V. L. Velichansky, M. O. Scully, and G. R. Welch, "Compensation of ac Stark shifts in optical magnetometry," Phys. Rev. A 63, 063802 (2001). [CrossRef]
  34. R. Drampyan, S. Pustelny, and W. Gawlik, "Electromagnetically induced transparency versus nonlinear Faraday effect: Coherent control of light-beam polarization," Phys. Rev. A 80, 033815 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited