OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18742–18753

Self-optimized metal coatings for fiber plasmonics by electroless deposition

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18742-18753 (2011)
http://dx.doi.org/10.1364/OE.19.018742


View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method to prepare optimized metal coatings for infrared Surface Plasmon Resonance (SPR) sensors by electroless plating. We show that Tilted Fiber Bragg grating sensors can be used to monitor in real-time the growth of gold nano-films up to 70 nm in thickness and to stop the deposition of the gold at a thickness that maximizes the SPR (near 55 nm for sensors operating in the near infrared at wavelengths around 1550 nm). The deposited films are highly uniform around the fiber circumference and in spite of some nanoscale roughness (RMS surface roughness of 5.17 nm) the underlying gratings show high quality SPR responses in water.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: July 20, 2011
Revised Manuscript: August 27, 2011
Manuscript Accepted: August 27, 2011
Published: September 12, 2011

Citation
A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert, "Self-optimized metal coatings for fiber plasmonics by electroless deposition," Opt. Express 19, 18742-18753 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009). [CrossRef]
  2. K. S. Lee and T. Erdogan, “Fiber mode coupling in transmissive and reflective tilted fiber gratings,” Appl. Opt.39(9), 1394–1404 (2000). [CrossRef] [PubMed]
  3. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometer,” Meas. Sci. Technol.12(7), 765–770 (2001). [CrossRef]
  4. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt.46(7), 1142–1149 (2007). [CrossRef] [PubMed]
  5. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett.35(5), 637–639 (2010). [CrossRef] [PubMed]
  6. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett.32(3), 211–213 (2007). [CrossRef] [PubMed]
  7. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008). [CrossRef] [PubMed]
  8. T. Guo, H. Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express17(7), 5736–5742 (2009). [CrossRef] [PubMed]
  9. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt.27(6), 1160–1163 (1988). [CrossRef] [PubMed]
  10. R. Jorgenson and S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993). [CrossRef]
  11. J. Pollet, F. Delport, K. P. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron.25(4), 864–869 (2009). [CrossRef] [PubMed]
  12. H. Raether, “Surface plasma oscillations as a tool for surface examinations,” Surf. Sci.8(1-2), 233–246 (1967). [CrossRef]
  13. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B Chem.113(2), 774–781 (2006). [CrossRef]
  14. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE2836, 342–350 (1996). [CrossRef]
  15. R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001). [CrossRef]
  16. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from a fiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B25(4), 481–490 (2008). [CrossRef]
  17. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett.31(14), 2118–2120 (2006). [CrossRef] [PubMed]
  18. Y.-J. He, Y.-L. Lo, and J.-F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B23(5), 801–811 (2006). [CrossRef]
  19. S. Mani Tripathi, E. Marin, A. Kumar, and J.-P. Meunier, “Refractive index sensing characteristics of dual resonance long period gratings in bare and metal-coated D-shaped fibers,” Appl. Opt.48(31), 53–58 (2009). [CrossRef]
  20. B. Špačková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009). [CrossRef] [PubMed]
  21. C. Caucheteur, Y. Shevchenko, L. Y. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express19(2), 1656–1664 (2011). [CrossRef] [PubMed]
  22. V. Voisin, C. Caucheteur, P. Mégret, and J. Albert, “Interrogation technique for TFBG-SPR refractometers based on differential orthogonal light states,” Appl. Opt.50(22), 4257–4261 (2011). [CrossRef] [PubMed]
  23. S. Roh, H. Kim, and B. Lee, “Infrared surface plasmon resonance in a subwavelength metallic grating under illumination at a large incidence angle,” J. Opt. Soc. Am. B28(7), 1661–1667 (2011). [CrossRef]
  24. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008). [CrossRef]
  25. Y. Lo, Y. Lin, and Y. Chen, “Athermal fibre Bragg grating strain gauge with metal coating in measurement of thermal expansion coefficient,” Sens. Actuators A Phys.117(1), 103–109 (2005). [CrossRef]
  26. Y. Feng, H. Zhang, Y.-L. Li, and C.-F. Rao, “Temperature sensing of metal-coated fiber bragg grating,” IEEE/ASME Trans. Mechatron.15(4), 511–519 (2010). [CrossRef]
  27. S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, “New strategy for preparing thin gold films on modified glass surfaces by electroless deposition,” Langmuir19(9), 3958–3965 (2003). [CrossRef]
  28. J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” J. Phys. Chem. B110(32), 15700–15707 (2006). [CrossRef] [PubMed]
  29. M. Perez, “Gibbs–Thomson effects in phase transformations,” Scr. Mater.52(8), 709–712 (2005). [CrossRef]
  30. E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt.45(29), 7632–7642 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1528 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited