OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18754–18773

Supercontinuum generation in quasi-phasematched waveguides

C. R. Phillips, Carsten Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and Martin E. Fermann  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 18754-18773 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate supercontinuum generation in quasi-phase-matched waveguides using a single-envelope approach to capture second and third order nonlinear processes involved in the generation of octave-spanning spectra. Simulations are shown to agree with experimental results in reverse-proton-exchanged lithium-niobate waveguides. The competition between χ(2) and χ(3) self phase modulation effects is discussed. Chirped quasi-phasematched gratings and stimulated Raman scattering are shown to enhance spectral broadening, and the pulse dynamics involved in the broadening processes are explained.

© 2011 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: May 23, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: July 19, 2011
Published: September 12, 2011

C. R. Phillips, Carsten Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and Martin E. Fermann, "Supercontinuum generation in quasi-phasematched waveguides," Opt. Express 19, 18754-18773 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007). [CrossRef] [PubMed]
  2. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30, 332–334 (2005). [CrossRef] [PubMed]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  4. J. Price, T. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Leong, P. Petropoulos, J. Flanagan, G. Brambilla, X. Feng, and D. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007). [CrossRef]
  5. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010). [CrossRef]
  6. C. Langrock, S. Kumar, J. McGeehan, A. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006). [CrossRef]
  7. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 μm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13, 10742–10748 (2005). [CrossRef] [PubMed]
  8. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010). [CrossRef]
  9. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006), http://nlo.stanford.edu/system/files/dissertations/rostislav_roussev_thesis_december_2006.pdf .
  10. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  11. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modelling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15, 5382–5387 (2007). [CrossRef] [PubMed]
  12. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010). [CrossRef]
  13. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B27, 1707–1711 (2010).
  14. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001). [CrossRef]
  15. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  16. X. Liu, L. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999). [CrossRef]
  17. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 1881–1883 (2006). [CrossRef] [PubMed]
  18. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B19, 2505–2510 (2002).
  19. M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 2490–2492 (2007). [CrossRef] [PubMed]
  20. M. Bache and F. W. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010). [CrossRef]
  21. J. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  22. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008). [CrossRef]
  23. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010). [CrossRef] [PubMed]
  24. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010). [CrossRef] [PubMed]
  25. R. DeSalvo, A. Said, D. Hagan, E. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  26. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
  27. M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010). [CrossRef]
  28. C. R. Phillips, J. Jiang, C. Langrock, M. M. Fejer, and M. E. Fermann, “Self-Referenced Frequency Comb From a Tm-fiber Amplifier via PPLN Waveguide Supercontinuum Generation,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA5.
  29. A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158, 433 (1967). [CrossRef]
  30. P. J. Delfyett, R. Dorsinville, and R. R. Alfano, “Spectral and temporal measurements of the third-order nonlinear susceptibility of LiNbO3 using picosecond Raman-induce phase-conjugate spectroscopy,” Phys. Rev. B 40, 1885 (1989). [CrossRef]
  31. N. Surovtsev, V. Malinovskii, A. Pugachev, and A. Shebanin, “The nature of low-frequency raman scattering in congruent melting crystals of lithium niobate,” Phys. Solid State 45, 534–541 (2003). [CrossRef]
  32. R. Schiek, R. Stegeman, and G. I. Stegeman, “Measurement of third-order nonlinear susceptibility tensor elements in lithium niobate,” in “Frontiers in Optics,” (Optical Society of America, 2005), p. JWA74.
  33. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  34. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–859 (2002). [CrossRef]
  35. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  36. R. Boyd, “Stimulated Raman scattering and stimulated Rayleigh-Wing scattering,” in “Nonlinear Optics”, R. Boyd (Academic, 2008). [CrossRef]
  37. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “High-power mid-infrared optical parametric chirped-pulse amplifier based on aperiodically poled Mg:LiNbO3,” presented at the Conference on Lasers and Electro-optics (2011).
  38. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited