OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18774–18788

Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles

Mathieu Francoeur, Soumyadipta Basu, and Spencer J. Petersen  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 18774-18788 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1897 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field radiative heat transfer between isotropic, dielectric-based metamaterials is analyzed. A potassium bromide host medium comprised of silicon carbide (SiC) spheres with a volume filling fraction of 0.4 is considered for the metamaterial. The relative electric permittivity and relative magnetic permeability of the metamaterial are modeled via the Clausius-Mossotti relations linking the macroscopic response of the medium with the polarizabilities of the spheres. We show for the first time that electric and magnetic surface polariton (SP) mediated near-field radiative heat transfer occurs between dielectric-based structures. Magnetic SPs, existing in TE polarization, are physically due to strong magnetic dipole resonances of the spheres. We find that spherical inclusions with radii of 1 μm (or greater) are needed in order to induce SPs in TE polarization. On the other hand, electric SPs existing in TM polarization are generated by surface modes of the spheres, and are thus almost insensitive to the size of the inclusions. We estimate that the total heat flux around SP resonance for the metamaterial comprised of SiC spheres with radii of 1 μm is about 35% greater than the flux predicted between two bulks of SiC, where only surface phonon-polaritons in TM polarization are excited. The results presented in this work show that the near-field thermal spectrum can be engineered via dielectric-based metamaterials, which is crucial in many emerging technologies, such as in nanoscale-gap thermophotovoltaic power generation.

© 2011 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(240.6690) Optics at surfaces : Surface waves
(260.2160) Physical optics : Energy transfer
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials
(290.6815) Scattering : Thermal emission

ToC Category:

Original Manuscript: July 14, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 24, 2011
Published: September 12, 2011

Mathieu Francoeur, Soumyadipta Basu, and Spencer J. Petersen, "Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles," Opt. Express 19, 18774-18788 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  5. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  8. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  9. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  11. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  13. C. J. Fu, Z. M. Zhang, and D. B. Tanner, “Planar heterogeneous structures for coherent emission of radiation,” Opt. Lett. 30(14), 1873–1875 (2005). [CrossRef] [PubMed]
  14. M. Maksimović and Z. Jakšić, “Emittance and absorptance tailoring by negative refractive index metamaterial-based Cantor multilayers,” J. Opt. A-Pure Appl. Opt. 8, 355–362 (2006). [CrossRef]
  15. F. F. de Medeiros, E. L. Albuquerque, M. S. Vasconcelos, and P. W. Mauriz, “Thermal radiation in quasiperiodic photonic crystals with negative refractive index,” J. Phys. Condens. Matter 19(49), 496212 (2007). [CrossRef]
  16. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16(15), 11328–11336 (2008). [CrossRef] [PubMed]
  17. C. J. Fu and Z. M. Zhang, “Further investigation of coherent thermal emission from single negative materials,” Nanosc. Microsc. Therm. 12(1), 83–97 (2008). [CrossRef]
  18. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009). [CrossRef]
  19. C. J. Fu and Z. M. Zhang, “Thermal radiative properties of metamaterials and other nanostructured materials: A review,” Front. Energy Power Eng. China 3(1), 11–26 (2009). [CrossRef]
  20. L.-G. Wang, G.-X. Li, and S.-Y. Zhu, “Thermal emission from layered structures containing a negative-zero-positive index metamaterial,” Phys. Rev. B 81(7), 073105 (2010). [CrossRef]
  21. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011). [CrossRef]
  22. L. P. Wang and Z. M. Zhang, “Phonon-mediated magnetic polaritons in the infrared region,” Opt. Express 19(S2Suppl 2), A126–A135 (2011). [CrossRef] [PubMed]
  23. K. Joulain, J. Drevillon, and P. Ben-Abdallah, “Noncontact heat transfer between two metamaterials,” Phys. Rev. B 81(16), 165119 (2010). [CrossRef]
  24. Z. Zheng and Y. Xuan, “Theory of near-field radiative heat transfer for stratified magnetic media,” Int. J. Heat Mass Tran. 54(5-6), 1101–1110 (2011). [CrossRef]
  25. Z. Zheng and Y. Xuan, “Near-field radiative heat transfer between general materials and metamaterials,” Chin. Sci. Bull. 56(22), 2312–2319 (2011). [CrossRef]
  26. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009). [CrossRef]
  27. J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer (Fifth Edition, CRC Press, 2011), Chap. 16.
  28. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Enhanced radiative heat transfer at nanometric distances,” Microscale Thermophys. Eng. 6(3), 209–222 (2002). [CrossRef]
  29. S. Basu, B. J. Lee, and Z. M. Zhang, “Near-field radiation calculated with an improved dielectric function model for doped silicon,” J. Heat Transfer 132(2), 023302 (2010). [CrossRef]
  30. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57(3-4), 59–112 (2005). [CrossRef]
  31. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  32. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunnelling microscopy,” Nature 444(7120), 740–743 (2006). [CrossRef] [PubMed]
  33. R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. K. H. Choy, M. M. Masaki, and C. G. Fonstad, “Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap,” Appl. Phys. Lett. 79(12), 1894–1896 (2001). [CrossRef]
  34. M. D. Whale and E. G. Cravalho, “Modeling and performance of microscale thermophotovoltaic energy conversion devices,” IEEE Trans. Energ. Convers. 17(1), 130–142 (2002). [CrossRef]
  35. M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic energy conversion,” J. Appl. Phys. 100(6), 063704 (2006). [CrossRef]
  36. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 305–316 (2008). [CrossRef]
  37. M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators,” IEEE Trans. Energ. Convers. 26(2), 686–698 (2011). [CrossRef]
  38. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010). [CrossRef] [PubMed]
  39. S. Basu and M. Francoeur, “Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98(11), 113106 (2011). [CrossRef]
  40. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72(19), 193103 (2005). [CrossRef]
  41. M. S. Wheeler, J. S. Aitchison, J. I. L. Chen, G. A. Ozin, and M. Mojahedi, “Infrared magnetic response in a random silicon carbide micropowder,” Phys. Rev. B 79(7), 073103 (2009). [CrossRef]
  42. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009). [CrossRef]
  43. M. S. Wheeler, A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics, PhD thesis, University of Toronto (2010).
  44. L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Electr. Eng. 94, 65–68 (1947).
  45. S. O’Brien and J. B. Pendry, “Photonics band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter 14(15), 4035–4044 (2002). [CrossRef]
  46. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antenn. Propag. 51(10), 2596–2603 (2003). [CrossRef]
  47. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17(25), 3717–3734 (2005). [CrossRef] [PubMed]
  48. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies,” Phys. Rev. B 73(4), 045105 (2006). [CrossRef]
  49. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007). [CrossRef] [PubMed]
  50. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters,” J. Opt. Soc. Am. B 27(5), 1083–1091 (2010). [CrossRef]
  51. R.-L. Chern and X.-X. Liu, “Effective parameters and quasi-static resonances for periodic arrays of dielectric spheres,” J. Opt. Soc. Am. B 27(3), 488–497 (2010). [CrossRef]
  52. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields (Springer, 1989).
  53. M. Francoeur and M. P. Mengüç, “Role of fluctuational electrodynamics in near-field radiative heat transfer,” J. Quant. Spectrosc. Radiat. Transf. 109(2), 280–293 (2008). [CrossRef]
  54. L.-W. Li, P.-S. Kooi, M.-S. Leong, and T.-S. Yeo, “Electromagnetic dyadic Green’s function in spherically multilayered media,” IEEE T. Microw. Theory 42(12), 2302–2310 (1994). [CrossRef]
  55. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  56. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s function and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009). [CrossRef]
  57. J. Skaar, “On resolving the refractive index and the wave vector,” Opt. Lett. 31(22), 3372–3374 (2006). [CrossRef] [PubMed]
  58. J. D. Jackson, Classical Electrodynamics, (Third Edition, John Wiley & Sons, 1999).
  59. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  60. E. D. Palik, Handbook of Optical Constants of Solids (Vol. 1, Academic Press, 1998).
  61. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Spectral tuning of near-field radiative heat flux between two silicon carbide films,” J. Phys. D Appl. Phys. 43(7), 075501 (2010). [CrossRef]
  62. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277(1), 61–64 (2000). [CrossRef]
  63. S. A. Darmanyan, M. Nevière, and A. A. Zakhidov, “Surface modes at the interface of conventional and left-handed media,” Opt. Commun. 225(4-6), 233–240 (2003). [CrossRef]
  64. E. Rousseau, M. Laroche, and J.-J. Greffet, “Radiative heat transfer at nanoscale: Closed-form expression for silicon at different doping levels,” J. Quant. Spectrosc. Radiat. Transf. 111(7-8), 1005–1014 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited