OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18795–18806

Concentrating evanescent waves: Systematic analyses of properties of the needle beam in three-medium dielectric cylindrical waveguide

Fangli Qin and Yang Zhao  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 18795-18806 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1682 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Needle beam is a guided beam with nanoscale beam size and significant power propagating in core area of a three-layer dielectric waveguide. Systematical numerical analyses of properties of the needle beam are presented. Properties of the fundamental mode of the needle beam, including field distribution, power distribution, and power concentration, are calculated for different waveguide parameters. It is shown that there is an optimum value of normalized frequency for maximum power concentration. Concentrated power is higher if the refractive index difference between the core and the middle layer is higher.

© 2011 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.0240) Optics at surfaces : Optics at surfaces
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: July 14, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: August 29, 2011
Published: September 12, 2011

Fangli Qin and Yang Zhao, "Concentrating evanescent waves: Systematic analyses of properties of the needle beam in three-medium dielectric cylindrical waveguide," Opt. Express 19, 18795-18806 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Bondarenko and Y. Zhao, “Needle beam”: Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide,” Appl. Phys. Lett. 89(14), 141103 (2006). [CrossRef]
  2. V. Bondarenko and Y. Zhao, “Addendum: The 'needle beam': Beyond-diffraction-limit concentration of field and transmitted power in dielectric waveguide,” Appl. Phys. Lett. 91(8), 089903 (2007). [CrossRef]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  4. R. Gordon, “Angle-dependent optical transmission through a narrow slit in a thick metal film,” Phys. Rev. B 75(19), 193401 (2007). [CrossRef]
  5. F. J. García-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006). [CrossRef]
  6. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  7. K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics,” Opt. Express 14(1), 320–330 (2006). [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]
  9. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  10. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  11. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  12. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  13. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  14. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York; Oxford, 1997).
  15. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, “Optical-Potential for Atom Guidance in a Cylindrical-Core Hollow-Fiber,” Opt. Commun. 115(1-2), 57–64 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited