OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18842–18860

Opto-acoustic behavior of coated fiber Bragg gratings

Massimo Moccia, Marco Pisco, Antonello Cutolo, Vincenzo Galdi, Pierantonio Bevilacqua, and Andrea Cusano  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18842-18860 (2011)
http://dx.doi.org/10.1364/OE.19.018842


View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present the study of the acousto-optic behavior of underwater-acoustic sensors constituted by fiber Bragg gratings (FBGs) coated by ring-shaped overlays. Via full-wave numerical simulations, we study the complex opto-acousto-mechanical interaction among an incident acoustic wave traveling in water, the optical fiber surrounded by the ring shaped coating, and the FBG inscribed the fiber, focusing on the frequency range 0.5-30 kHz of interest for SONAR applications. Our results fully characterize the mechanical behavior of an acoustically driven coated FBG, and highlight the key role played by the coating in enhancing significantly its sensitivity by comparison with a standard uncoated configuration. Furthermore, the hydrophone sensitivity spectrum exhibits characteristic resonances, which strongly improve the sensitivity with respect to its background (i.e., away from resonances) level. Via a three-dimensional modal analysis, we verify that the composite cylindrical structure of the sensor acts as an acoustic resonator tuned at the frequencies of its longitudinal vibration modes. In order to evaluate the sensor performance, we also carry out a comprehensive parametric analysis by varying the geometrical and mechanical properties of the coating, whose results also provide a useful design tool for performance optimization and/or tailoring for specific SONAR applications. Finally, a preliminary validation of the proposed numerical analysis has been carried out through experimental data obtained using polymeric coated FBGs sensors revealing a good agreement and prediction capability.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.1040) Optical devices : Acousto-optical devices
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: June 30, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 22, 2011
Published: September 13, 2011

Citation
Massimo Moccia, Marco Pisco, Antonello Cutolo, Vincenzo Galdi, Pierantonio Bevilacqua, and Andrea Cusano, "Opto-acoustic behavior of coated fiber Bragg gratings," Opt. Express 19, 18842-18860 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004). [CrossRef]
  2. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists (Wiley, New York, 1990).
  3. G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J.8(7), 1184–1193 (2008). [CrossRef]
  4. D. J. Hill and P. J. Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” Proc. SPIE4185, 33–36 (2000).
  5. S. Fosters, A. Tikhomirova, M. Milnesa, J. van Velzena, and G. Hardyb, “A fibre laser hydrophone,” Proc. SPIE5855, 627–630 (2005). [CrossRef]
  6. S. Goodman, S. Foster, J. Van Velzen, and H. Mendis, “Field demonstration of a DFB fibre laser hydrophone seabed array in Jervis Bay, Australia,” Proc. SPIE7503, 75034L1 (2009).
  7. N. Takahashi, A. Hirose, and S. Takahashi, “Underwater acoustic sensor with fiber Bragg grating,” Opt. Rev.4(6), 691–694 (1997). [CrossRef]
  8. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics38(1-8), 581–585 (2000). [CrossRef] [PubMed]
  9. W. Thongnum, N. Takahashi, and S. Takahashi, “Temperature stabilization of fiber Bragg grating vibration sensor,” in OFS 2002, 15th Optical Fiber Sensors Conference Technical Digest, 2002. (2002), Vol. 1, pp. 223–226.
  10. N. Takahashi, K. Tetsumura, and S. Takahashi, “Multipoint detection of acoustical wave in water with WDM fiber Bragg grating sensor,” Proc. SPIE3740, 270–273 (1999). [CrossRef]
  11. H. Yokosuka, S. Tanaka, and N. Takahashi, “Time-division multiplexing operation of temperature-compensated fiber Bragg grating underwater acoustic sensor array with feedback control,” Acoust. Sci. Technol.26(5), 456–458 (2005). [CrossRef]
  12. D. J. Hill and G. A. Cranch, “Gain in hydrostatic pressure sensitivity of coated fiber Bragg grating,” Electron. Lett.35(15), 1268–1269 (1999). [CrossRef]
  13. Y. Liu, Z. Guo, Y. Zhang, K. S. Chiang, and X. Dong, “Simultaneous pressure and temperature measurement with polymer-coated fiber Bragg grating,” Electron. Lett.36(6), 564–566 (2000). [CrossRef]
  14. G. B. Hocker, “Fiber optic acoustic sensors with composite structure: an analysis,” Appl. Opt.18(21), 3679–3683 (1979). [CrossRef] [PubMed]
  15. A. Cusano, S. D’Addio, A. Cutolo, S. Campopiano, M. Balbi, S. Balzarini, and M. Giordano, “Enhanced acoustic sensitivity in polymeric coated fiber Bragg grating,” Sensors Transducers82, 1450–1457 (2007).
  16. S. Campopiano, A. Cutolo, A. Cusano, M. Giordano, G. Parente, G. Lanza, and A. Laudati, “Underwater acoustic sensors based on fiber Bragg gratings,” Sensors (Basel Switzerland)9(6), 4446–4454 (2009). [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987).
  18. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering (Springer, 1998).
  19. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  20. C. J. S. de Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “Fiber Bragg grating (FBG) characterization and shaping by local pressure,” J. Lightwave Technol.19(8), 1206–1211 (2001). [CrossRef]
  21. A. Minardo, A. Cusano, R. Bernini, L. Zeni, and M. Giordano, “Response of fiber Bragg gratings to longitudinal ultrasonic waves,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(2), 304–312 (2005). [CrossRef] [PubMed]
  22. COMSOL Multiphysics, User’s Guide (COMSOL AB, 2008).
  23. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961). [CrossRef]
  24. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter52(11), 7982–7986 (1995). [CrossRef] [PubMed]
  25. A. Ricciardi, I. Gallina, S. Campopiano, G. Castaldi, M. Pisco, V. Galdi, and A. Cusano, “Guided resonances in photonic quasicrystals,” Opt. Express17(8), 6335–6346 (2009). [PubMed]
  26. G. M. L. Gladwell and D. K. Vijay, “Natural frequencies of free finite length circular cylinders,” J. Sound Vibrat.42(3), 387–397 (1975). [CrossRef]
  27. C. F. Beards, Structural Vibration Analysis and Damping (Butterworth Heinemann, 1996).
  28. A. Guran, J. Ripoche, and F. Ziegler, Acoustic Interactions with Submerged Elastic Structures (World Scientific, 1996).
  29. M. Moccia, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part I: numerical analysis,” Proc. SPIE7753, 775384, 775384-4 (2011). [CrossRef]
  30. M. Moccia, M. Consales, A. Iadicicco, M. Pisco, M. Giordano, A. Cutolo, and A. Cusano, “Resonant hydrophones based on coated fiber Bragg gratings. Part II: experimental analysis,” Proc. SPIE7753, 775383, 775383-4 (2011). [CrossRef]
  31. “Damival resins: polyurethane and epoxy systems for potting and encapsulation,” www.sibel.bg/upl_doc/DAMIVAL_E.pdf .
  32. “Huntsman advanced materials,” www.huntsmanservice.com/Product_Finder/ui/PSDetailCompositeList.do?pInfoSBUId=9&PCId=1663
  33. “eFunda polymer material properties,” http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PU&MinorID=1 .
  34. T. Pritz, “The Poisson’s loss factor of solid viscoelastic materials,” J. Sound Vibrat.306(3-5), 790–802 (2007). [CrossRef]
  35. A. Sorathia, “Polyurethane-epoxy interpenetrating polymer network acoustic damping material,” U.S. Patent No. 5,331,062 (19 July 1994).
  36. F. A. Khayyat and P. Stanley, “The dependence of the mechanical, physical and optical properties of Araldite CT200/HT 907 on temperature over the range −10°C to 70°C,” J. Phys. D Appl. Phys.11(8), 1237–1247 (1978). [CrossRef]
  37. F. J. P. Chaves, “Application of adhesive bonding in PVC windows,” MSc Thesis (University of Porto, Portugal, 2005), http://www.scribd.com/doc/37203644/MSc-Thesis .
  38. Bodo Möller Chemie, “Technical data: PUR and epoxy” http://www.bm-chemie.de/content/de/download/pub/Elektrogiessharze_12_03_2009.pdf

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (1400 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited