OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18861–18870

Protein-based ultrafast photonic switching

László Fábián, Zsuzsanna Heiner, Mark Mero, Miklós Kiss, Elmar K. Wolff, Pál Ormos, Károly Osvay, and András Dér  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18861-18870 (2011)
http://dx.doi.org/10.1364/OE.19.018861


View Full Text Article

Enhanced HTML    Acrobat PDF (1336 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(320.7120) Ultrafast optics : Ultrafast phenomena
(060.1155) Fiber optics and optical communications : All-optical networks
(160.1435) Materials : Biomaterials
(130.4815) Integrated optics : Optical switching devices
(320.7085) Ultrafast optics : Ultrafast information processing

ToC Category:
Integrated Optics

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: August 19, 2011
Published: September 13, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
László Fábián, Zsuzsanna Heiner, Mark Mero, Miklós Kiss, Elmar K. Wolff, Pál Ormos, Károly Osvay, and András Dér, "Protein-based ultrafast photonic switching," Opt. Express 19, 18861-18870 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Haque and J. Nelson, “Toward organic all-optical switching,” Science327(5972), 1466–1467 (2010). [CrossRef] [PubMed]
  2. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and R. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science327(5972), 1485–1488 (2010). [CrossRef] [PubMed]
  3. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics2(3), 185–189 (2008). [CrossRef]
  4. W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochim. Biophys. Acta505, 215–278 (1979).
  5. N. Vsevolodov, Biomolecular electronics (Birkhauser, Boston, 1998).
  6. E. Korchemskaya, N. Burykin, S. Bugaychuk, O. Maksymova, T. Ebrey, and S. P. Balashov, “Dynamic holography in bacteriorhodopsin/gelatin films: Effects of light-dark adaptation at different humidity,” Photochem. Photobiol.83(2), 403–408 (2007). [CrossRef] [PubMed]
  7. J. A. Stuart, D. L. Marcy, and R. R. Birge, “Photonic and optoelectronic application of bacteriorhodopsin,” in Bioelectronic Applications of Photochromic Pigments, A. Dér, and L. Keszthelyi, eds. (2001), pp. 15–29.
  8. D. Zeisel and N. Hampp, “Spectral relationship of light-induced refractive index and absorption changes in bacteriorhodopsin films containing wildtype BR and the variant BR-D96N,” J. Phys. Chem.96(19), 7788–7792 (1992). [CrossRef]
  9. K. J. Wise, N. B. Gillespie, J. A. Stuart, M. P. Krebs, and R. R. Birge, “Optimization of bacteriorhodopsin for bioelectronic devices,” Trends Biotechnol.20(9), 387–394 (2002). [CrossRef] [PubMed]
  10. S. P. Balashov, “Photoreactions of the photointermediates of bacteriorhodopsin,” Isr. J. Chem.35, 415–428 (1995).
  11. P. Ormos, Z. Dancsházy, and L. Keszthelyi, “Electric response of a back photoreaction in the bacteriorhodopsin photocycle,” Biophys. J.31(2), 207–213 (1980). [CrossRef] [PubMed]
  12. A. Colonna, G. I. Groma, and M. H. Vos, “Retinal isomerization dynamics in dry bacteriorhodopsin films,” Chem. Phys. Lett.415(1-3), 69–73 (2005). [CrossRef]
  13. G. Váró and L. Keszthelyi, “Photoelectric signals from dried oriented purple membranes of Halobacterium halobium,” Biophys. J.43(1), 47–51 (1983). [CrossRef] [PubMed]
  14. L. Fábián, E. K. Wolff, L. Oroszi, P. Ormos, and A. Dér, “Fast integrated optical switching by the protein bacterorhodopsin,” Appl. Phys. Lett.97(2), 023305 (2010). [CrossRef]
  15. P. Ormos, L. Fábián, L. Oroszi, E. K. Wolff, J. J. Ramsden, and A. Dér, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett.80(21), 4060–4062 (2002). [CrossRef]
  16. A. Dér, S. Valkai, L. Fábián, P. Ormos, J. J. Ramsden, and E. K. Wolff, “Integrated optical switching based on the protein bacteriorhodopsin,” Photochem. Photobiol.83(2), 393–396 (2007). [CrossRef]
  17. S. Roy, M. Prasad, J. Topolancik, and F. Vollmer, “All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits,” J. Appl. Phys.107(5), 053115 (2010). [CrossRef]
  18. J. Topolancik and F. Vollmer, “All-optical switching in the near infrared with bacteriorhodopsin-coated microcavities,” Appl. Phys. Lett.89(18), 184103 (2006). [CrossRef]
  19. E. K. Wolff and A. Dér, “All-optical logic,” Nanotechnol. Percept.6, 51–56 (2010). [CrossRef]
  20. M. Mero, A. Sipos, G. Kurdi, and K. Osvay, “Generation of energetic femtosecond green pulses based on an OPCPA-SFG scheme,” Opt. Express19(10), 9646–9655 (2011). [CrossRef] [PubMed]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989). [CrossRef]
  22. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002). [CrossRef] [PubMed]
  23. R. A. Mathies, C. H. Brito Cruz, W. T. Pollard, and C. V. Shank, “Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin,” Science240(4853), 777–779 (1988). [CrossRef] [PubMed]
  24. S. Ruhman, B. X. Hou, N. Friedman, M. Ottolenghi, and M. Sheves, “Following evolution of bacteriorhodopsin in its reactive excited state via stimulated emission pumping,” J. Am. Chem. Soc.124(30), 8854–8858 (2002). [CrossRef] [PubMed]
  25. S. Sharkov, A. Pakulev, S. Chekalin, and Y. Matveetz, “Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy,” Biochim. Biophys. Acta808(1), 94–102 (1985). [CrossRef]
  26. A. Aharoni, B. Hou, N. Friedman, M. Ottolenghi, I. Rousso, S. Ruhman, M. Sheves, T. Ye, and Q. Zhong, “Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin,” Biochemistry (Mosc.)66(11), 1210–1219 (2001). [CrossRef]
  27. A. Biesso, W. Qian, and M. El-Sayed, “Gold nanoparticle plasmonic field effect on the primary stepof the other photosynthetic system in Nature, bacteriorhodopsin,” J. Am. Chem. Soc.130(11), 3258–3259 (2008). [CrossRef] [PubMed]
  28. J. Dobler, W. Zinth, W. Kaiser, and D. Oesterhelt, “Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy,” Chem. Phys. Lett.144(2), 215–220 (1988). [CrossRef]
  29. D. W. McCamant, P. Kukura, and R. A. Mathies, “Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin,” J. Phys. Chem. B109(20), 10449–10457 (2005). [CrossRef]
  30. M. L. Applebury, K. S. Peters, and P. M. Rentzepis, “Primary intermediates in the photochemical cycle of bacteriorhodopsin,” Biophys. J.23(3), 375–382 (1978). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited