OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18871–18884

Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics

Tomáš Čižmár and Kishan Dholakia  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18871-18884 (2011)
http://dx.doi.org/10.1364/OE.19.018871


View Full Text Article

Enhanced HTML    Acrobat PDF (1582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a powerful approach towards full understanding of laser light propagation through multimode optical fibres and control of the light at the fibre output. Transmission of light within a multimode fibre introduces randomization of laser beam amplitude, phase and polarization. We discuss the importance of each of these factors and introduce an experimental geometry allowing full analysis of the light transmission through the multimode fibre and subsequent beam-shaping using a single spatial light modulator. We show that using this approach one can generate an arbitrary output optical field within the accessible field of view and range of spatial frequencies given by fibre core diameter and numerical aperture, respectively, that contains over 80% of the total available power. We also show that this technology has applications in biophotonics. As an example, we demonstrate the manipulation of colloidal microparticles.

© 2011 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(090.1000) Holography : Aberration compensation
(090.1760) Holography : Computer holography
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 15, 2011
Manuscript Accepted: August 21, 2011
Published: September 14, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Tomáš Čižmár and Kishan Dholakia, "Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics," Opt. Express 19, 18871-18884 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32, 2309–2311 (2007). [CrossRef] [PubMed]
  2. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281, 3071–3080 (2008). [CrossRef]
  3. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials,” Opt. Express16, 67–80 (2008). [CrossRef] [PubMed]
  4. I. M. Vellekoop and A. P. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett.101, 120601 (2008). [CrossRef] [PubMed]
  5. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010). [CrossRef]
  6. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett.36, 1707–1709 (2011). [CrossRef] [PubMed]
  7. M. Paurisse, M. Hanna, F. Druon, P. Georges, C. Bellanger, A. Brignon, and J. P. Huignard, “Phase and amplitude control of a multimode lma fiber beam by use of digital holography,” Opt. Express17, 13000–13008 (2009). [CrossRef] [PubMed]
  8. R. D. Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express19, 247–254 (2011). [CrossRef] [PubMed]
  9. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  10. T. Čižmár and K. Dholakia, “Tunable Bessel light modes: engineering the axial propagation,” Opt. Express17, 15558–15570 (2009). [CrossRef] [PubMed]
  11. G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, “Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt.33, 209–218 (1994). [CrossRef] [PubMed]
  12. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics5, 335–342 (2011). [CrossRef]
  13. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24, 156–159 (1970). [CrossRef]
  14. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11, 288–290 (1986). [CrossRef] [PubMed]
  15. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics1, 723–727 (2007). [CrossRef]
  16. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, T. Birks, T. Hedley, and P. S. Russell, “Very high numerical aperture fibers,” Photon. Technol. Lett.16, 843–845 (2004). [CrossRef]
  17. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett.29, 2270–2272 (2004). [CrossRef] [PubMed]
  18. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett.8, 50–56 (2011). [CrossRef]
  19. A. Constable and J. Kim, “Demonstration of a fiber-optical light-force trap,” Opt. Lett.18, 1867–1869 (1993). [CrossRef] [PubMed]
  20. J. Guck, R. Ananthakrishnan, H. Mahmood, T. Moon, C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J.81, 767–784 (2001). [CrossRef] [PubMed]
  21. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express17, 19414–19423 (2009). [CrossRef] [PubMed]
  22. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (28 KB)      QuickTime
» Media 2: MOV (1180 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited