OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18885–18892

Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications

Hope T. Beier, Gary D. Noojin, and Benjamin A. Rockwell  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18885-18892 (2011)
http://dx.doi.org/10.1364/OE.19.018885


View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Stimulated Raman scattering (SRS) is a powerful tool for obtaining background-free chemical information about a material without extrinsic labeling. Background-free spectra are particularly important in the fingerprint region (~800 and 1800 cm−1) where peaks are narrow, closely-spaced, and may be in abundance for a particular chemical. We demonstrate a method for obtaining SRS spectra using a single femtosecond laser oscillator. A photonic crystal fiber is used to create a supercontinuum to provide a range of Stokes shifts from ~300 to 3400 cm−1. This SRS approach provides for collection capabilities that are easily modified between obtaining broadband spectra and single-frequency images.

© 2011 OSA

OCIS Codes
(290.5910) Scattering : Scattering, stimulated Raman
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Spectroscopy

History
Original Manuscript: July 19, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: August 25, 2011
Published: September 14, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Hope T. Beier, Gary D. Noojin, and Benjamin A. Rockwell, "Stimulated Raman scattering using a single femtosecond oscillator with flexibility for imaging and spectral applications," Opt. Express 19, 18885-18892 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Chan, S. Fore, S. Wachsmann-Hogiu, and T. Huser, “Raman spectroscopy and microscopy of individual cells and cellular components,” Laser Photon. Rev.2(5), 325–349 (2008). [CrossRef]
  2. T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc.33(7), 580–585 (2002). [CrossRef]
  3. M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, and P. J. Treado, “Raman chemical imaging—noninvasive visualization of polymer blend architecture,” Anal. Chem.67(23), 4316–4321 (1995). [CrossRef]
  4. B. D. Patel and P. J. Mehta, “An overview: application of Raman spectroscopy in pharmaceutical field,” Curr. Pharm. Anal.6(2), 131–141 (2010). [CrossRef]
  5. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999). [CrossRef]
  6. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscopy with high spectral resolution and high sensitivity,” J. Phys. Chem. B105(7), 1277–1280 (2001). [CrossRef]
  7. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  8. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett.31(12), 1872–1874 (2006). [CrossRef] [PubMed]
  9. E. M. Vartiainen, “Phase retrieval approach for coherent anti-Stokes Raman scattering spectrum analysis,” J. Opt. Soc. Am. B9(8), 1209–1215 (1992). [CrossRef]
  10. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express14(8), 3622–3630 (2006). [CrossRef] [PubMed]
  11. Y. X. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J. Raman Spectrosc.40(7), 726–731 (2009). [CrossRef]
  12. Y. X. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009). [CrossRef] [PubMed]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  14. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys.11(3), 033026 (2009). [CrossRef]
  15. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004). [CrossRef]
  16. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008). [CrossRef]
  17. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express17(4), 2984–2996 (2009). [CrossRef] [PubMed]
  18. S. H. Parekh, Y. J. Lee, K. A. Aamer, and M. T. Cicerone, “Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy,” Biophys. J.99(8), 2695–2704 (2010). [CrossRef] [PubMed]
  19. B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett.31(3), 413–415 (2006). [CrossRef] [PubMed]
  20. Refractive Index Database, http://refractiveindex.info .
  21. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Elsevier Inc, 2006).
  22. National Institute of Advanced Industrial Science and Technology, SDBSWeb, http://riodb01.ibase.aist.go.jp/sdbs/ .
  23. M. Bonn and E. Vartiainen, “Maximum entropy method for phase retrieval of CARS data,” http://memcars.amolf.nl/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited