OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18903–18909

High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers

T. W. Allen, J. Silverstone, N. Ponnampalam, T. Olsen, A. Meldrum, and R. G. DeCorby  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18903-18909 (2011)
http://dx.doi.org/10.1364/OE.19.018903


View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Arrays of half-symmetric Fabry-Perot micro-cavities were fabricated by controlled formation of circular delamination buckles within a-Si/SiO2 multilayers. Cavity height scales approximately linearly with diameter, in reasonable agreement with predictions based on elastic buckling theory. The measured finesse (F > 103) and quality factors (Q > 104 in the 1550 nm range) are close to reflectance limited predictions, indicating that the cavities have low roughness and few defects. Degenerate Hermite-Gaussian and Laguerre-Gaussian modes were observed, suggesting a high degree of cylindrical symmetry. Given their silicon-based fabrication, these cavities hold promise as building blocks for integrated optical sensing systems.

© 2011 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 6, 2011
Revised Manuscript: August 20, 2011
Manuscript Accepted: August 23, 2011
Published: September 14, 2011

Citation
T. W. Allen, J. Silverstone, N. Ponnampalam, T. Olsen, A. Meldrum, and R. G. DeCorby, "High-finesse cavities fabricated by buckling self-assembly of a-Si/SiO2 multilayers," Opt. Express 19, 18903-18909 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. J. Eklund and A. M. Shkel, “Factors affecting the performance of micromachined sensors based on Fabry-Perot interferometry,” J. Micromech. Microeng.15(9), 1770–1776 (2005). [CrossRef]
  2. W. Liu and J. J. Talghader, “Thermally invariant dielectric coatings for micromirrors,” Appl. Opt.41(16), 3285–3293 (2002). [CrossRef] [PubMed]
  3. R. R. A. Syms, “Principles of free-space optical microelectromechanical systems,” in Part C: Journal of Mechanical Engineering Science, Vol. 222 of Proceedings of the Institution of Mechanical Engineers (Sage Publications, 2008), pp. 1–17.
  4. P. Tayebati, P. Wang, M. Azimi, L. Maflah, and D. Vakhshoori, “Microelectromechanical tunable filter with stable half symmetric cavity,” Electron. Lett.34(20), 1967–1968 (1998). [CrossRef]
  5. H. Halbritter, M. Aziz, F. Riemenschneider, and P. Meissner, “Electrothermally tunable two-chip optical filter with very low-cost and simple concept,” Electron. Lett.38(20), 1201–1202 (2002). [CrossRef]
  6. R. Crocombe, “MEMS technology moves process spectroscopy into a new dimension,” Spectroscopy Europe16–19 (June–July 2004).
  7. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450(7167), 272–276 (2007). [CrossRef] [PubMed]
  8. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics3(4), 201–205 (2009). [CrossRef]
  9. C. Toninelli, Y. Delley, T. Stoferle, A. Renn, S. Gotzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett.97(2), 021107 (2010). [CrossRef]
  10. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett.35(21), 3556–3558 (2010). [CrossRef] [PubMed]
  11. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett.35(13), 2293–2295 (2010). [CrossRef] [PubMed]
  12. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett.87(21), 211106 (2005). [CrossRef]
  13. E. Epp, N. Ponnampalam, W. Newman, B. Drobot, J. N. McMullin, A. F. Meldrum, and R. G. DeCorby, “Hollow Bragg waveguides fabricated by controlled buckling of Si/SiO2 multilayers,” Opt. Express18(24), 24917–24925 (2010). [CrossRef] [PubMed]
  14. S. Bruynooghe, N. Schmidt, M. Sundermann, H. W. Becker, S. Spinzig, “Optical and structural properties of amorphous silicon coatings deposited by magnetron sputtering,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThA9.
  15. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007), Chap. 4.
  16. J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall. Mater.40(2), 295–308 (1992). [CrossRef]
  17. L. Freund and S. Suresh, Thin Film Materials, Stress, Defect Formation, and Surface Evolution (Cambridge University Press, 2003), Chap. 5.
  18. A. E. Siegman, Lasers (University Science Books, 1986).
  19. R. C. Pennington, G. D’Alessandro, J. J. Baumberg, and M. Kaczmarek, “Tracking spatial modes in nearly hemispherical microcavities,” Opt. Lett.32(21), 3131–3133 (2007). [CrossRef] [PubMed]
  20. I. Kimel and L. R. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron.29(9), 2562–2567 (1993). [CrossRef]
  21. E. Epp, N. Ponnampalam, J. N. McMullin, and R. G. Decorby, “Thermal tuning of hollow waveguides fabricated by controlled thin-film buckling,” Opt. Express17(20), 17369–17375 (2009). [CrossRef] [PubMed]
  22. E. Garmire, “Theory of quarter-wave-stack dielectric mirrors used in a thin fabry-perot filter,” Appl. Opt.42(27), 5442–5449 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited