OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18910–18916

A terahertz broadband 3dB directional coupler based on bridged PPDW

Longfang Ye, Yong Zhang, Ruimin Xu, and Weigan Lin  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18910-18916 (2011)
http://dx.doi.org/10.1364/OE.19.018910


View Full Text Article

Enhanced HTML    Acrobat PDF (1754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a novel broadband 3dB directional coupler with very flat coupling based on bridged parallel plate dielectric waveguide (PPDW) is proposed and demonstrated. In the uniform coupling section, a bridge structure between the two PPDWs is employed to obtain accurate coupling value and achieve a broadband coupling. It is found that this new type of coupling structure exhibits excellent performance at terahertz frequencies. In order to achieve strong isolation between the adjacent ports and reduce the power reflection in all ports, two quarter-circle bend arms are introduced as the curved transition sections to connect the uniform coupling section. For this bridged coupler, it only needs the value of the uniform coupling length as short as 400μm to achieve a broadband 3dB coupling. In this case, the coupler’s average return loss is greater than 28dB, average isolation is better than 27dB and average coupler loss is only 0.9dB, over a percentage bandwidth of 12.5% at 1THz. Compared to the conventional PPDW coupler, the bridged PPDW coupler shows significantly greater bandwidth (about 4.2 times), compact and mechanically stable with a much shorter uniform coupling length (reduced about 61%), which may have potential applications for terahertz integrated circuits and systems.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Integrated Optics

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 24, 2011
Manuscript Accepted: August 26, 2011
Published: September 14, 2011

Citation
Longfang Ye, Yong Zhang, Ruimin Xu, and Weigan Lin, "A terahertz broadband 3dB directional coupler based on bridged PPDW," Opt. Express 19, 18910-18916 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech.50(3), 910–928 (2002). [CrossRef]
  2. B. Clough, J. Liu, and X.-C. Zhang, ““All air-plasma” terahertz spectroscopy,” Opt. Lett.36(13), 2399–2401 (2011). [CrossRef] [PubMed]
  3. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, K. J. Ahn, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Near field imaging of terahertz focusing onto rectangular apertures,” Opt. Express16(25), 20484–20489 (2008). [CrossRef] [PubMed]
  4. V. P. Wallace, E. MacPherson, J. A. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A25, 3120–3133 (2008). [CrossRef]
  5. R. Degl’Innocenti, M. Montinaro, J. Xu, V. Piazza, P. Pingue, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, “Differential near-field scanning optical microscopy with THz quantum cascade laser sources,” Opt. Express17(26), 23785–23792 (2009). [CrossRef] [PubMed]
  6. C. Y. Jiang, J. S. Liu, B. Sun, K. J. Wang, S. X. Li, and J. Q. Yao, “Time-dependent theoretical model for terahertz wave detector using a parametric process,” Opt. Express18(17), 18180–18189 (2010). [CrossRef] [PubMed]
  7. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  8. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004). [CrossRef] [PubMed]
  9. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett.86(16), 161904 (2005). [CrossRef]
  10. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001). [CrossRef] [PubMed]
  11. R. Mendis, “Guided-wave THz time-domain spectroscopy of highly doped silicon using parallel-plate waveguides,” Electron. Lett.42(1), 19–21 (2006). [CrossRef]
  12. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express16(1), 7–12 (2008). [CrossRef] [PubMed]
  13. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon Photonic Crystal Fiber as Terahertz Waveguide,” Jpn. J. Appl. Phys.43(No. 2B), L317–L319 (2004). [CrossRef]
  14. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010). [CrossRef] [PubMed]
  15. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys.104(9), 093110 (2008). [CrossRef]
  16. D. Chen and H. Chen, “A novel low-loss Terahertz waveguide: polymer tube,” Opt. Express18(4), 3762–3767 (2010). [CrossRef] [PubMed]
  17. D. Chen, “Mode Property of Terahertz Polymer Tube,” J. Lightwave Technol.28(18), 2708–2713 (2010). [CrossRef]
  18. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express18(13), 13813–13828 (2010). [CrossRef] [PubMed]
  19. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  20. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011). [CrossRef]
  21. L. Ye, R. Xu, Z. Wang, and W. Lin, “A novel broadband coaxial probe to parallel plate dielectric waveguide transition at THz frequency,” Opt. Express18(21), 21725–21731 (2010). [CrossRef] [PubMed]
  22. T. Yoneyama and S. Nishida, “Nonradiative Dielectric Waveguide for Millimeter-Wave Intergrated Circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, no.11, pp. 1188–1192, Nov. (1981).
  23. T. Yoneyama, N. Tozawa, and S. Nishida, “Coupling Characteristics of Nonradiative Dielectric Waveguide,” IEEE Trans. Microwave Theory Tech., vol. MTT-31, no. 8, pp. 648–654, Aug. (1983).
  24. M. Pu, N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, “Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide,” Opt. Express18(20), 21030–21037 (2010). [CrossRef] [PubMed]
  25. G. K. C. Kwan and N. K. Das, “Excitation of a parallel-plate dielectric waveguide using a coaxial probe-basic characteristics and experiments,” IEEE Trans. Microw. Theory Tech.50(6), 1609–1620 (2002). [CrossRef]
  26. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Broadband terahertz fiber directional coupler,” Opt. Lett.35(17), 2879–2881 (2010). [CrossRef] [PubMed]
  27. K. Solbach and L. Wolff, “The electromagnetic fields and the phase constants of dielectric image lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 266–274, Apr. (1978).
  28. K. Solbach, “The Calculation and the Measurement of the Coupling Properties of Dielectric Image Lines of Rectangular Cross Sections,” IEEE Trans. MTT, vol.27, pp.54–58, Jan. (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited