OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18979–18988

Simulation of complex plasmonic circuits including bends

Claudio Dellagiacoma, Theo Lasser, Olivier J. F. Martin, Aloyse Degiron, Jack J. Mock, and David R. Smith  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 18979-18988 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a finite-element, full-wave modeling approach, we present a flexible method of analyzing and simulating dielectric and plasmonic waveguide structures as well as their mode coupling. This method is applied to an integrated plasmonic circuit where a straight dielectric waveguide couples through a straight hybrid long-range plasmon waveguide to a uniformly bent hybrid one. The hybrid waveguide comprises a thin metal core embedded in a two–dimensional dielectric waveguide. The performance of such plasmonic circuits in terms of insertion losses is discussed.

© 2011 OSA

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5460) Optoelectronics : Polymer waveguides
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: March 28, 2011
Revised Manuscript: August 21, 2011
Manuscript Accepted: August 28, 2011
Published: September 15, 2011

Claudio Dellagiacoma, Theo Lasser, Olivier J. F. Martin, Aloyse Degiron, Jack J. Mock, and David R. Smith, "Simulation of complex plasmonic circuits including bends," Opt. Express 19, 18979-18988 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, “Integrated plasmon and dielectric waveguides,” Opt. Express 12, 5481–5486 (2004). [CrossRef] [PubMed]
  2. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11, 015002 (2009). [CrossRef]
  3. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007). [CrossRef] [PubMed]
  4. R. Buckley and P. Berini, “Radiation suppressing metallo-dielectric optical waveguides,” J. Lightwave Technol. 27, 2800–2808 (2009). [CrossRef]
  5. R. Buckley and P. Berini, “Long-range substantially nonradiative metallo-dielectric waveguide,” Opt. Lett. 34, 223–225 (2009). [CrossRef] [PubMed]
  6. P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comput. Theor. Nanosci. 6, 2040–2053 (2009). [CrossRef]
  7. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804 (2008). [CrossRef]
  8. A. Krasavin, P. Bolger, A. Zayats, Stær, T. Holmgaard, Z. Chen, S. Bozhevolnyi, L. Markey, and A. Dereux, “Active components for integrated plasmonic circuits,” in “2nd IEEE LEOS Winter Topicals, WTM 2009,” (2009). [CrossRef]
  9. T. J. Davis, K. C. Vernon, and D. E. Gomez, “A plasmonic “ac wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106, 043502 (2009). [CrossRef]
  10. Y.-J. Tsai, A. Degiron, N. M. Jokerst, and D. R. Smith, “Plasmonic multi-mode interference couplers,” Opt. Express 17, 17471–17482 (2009). [CrossRef] [PubMed]
  11. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10, 105010 (2008). [CrossRef]
  12. R. Charbonneau, M. Tencer, N. Lahoud, and P. Berini, “Demonstration of surface sensing using long-range surface plasmon waveguides on silica,” Sens. Actuators B Chem. 134, 455–461 (2008). [CrossRef]
  13. A. Degiron and D.R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006). [CrossRef] [PubMed]
  14. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007). [CrossRef] [PubMed]
  15. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, “Simulations of hybrid long-range plasmon modes with application to 90 degrees bends,” Opt. Lett. 32, 2354–2356 (2007). [CrossRef] [PubMed]
  16. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  17. C. Wang and L. Lin, “Nanoscale waveguiding methods,” Nanoscale Res. Lett. 2, 219–229 (2007). [CrossRef] [PubMed]
  18. M. Mastro, R. Holm, C. E. Jr, and J. Kim, “Electromagnetic propagation in nanostructures,” J. Ceram. Proc. Res. 9, 1–5 (2008).
  19. J. T. Kim, J. J. Ju, S. Park, M. su Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133–13138 (2008). [CrossRef] [PubMed]
  20. J. Ctyroky, J. Homola, and M. Skalsky, “Modelling of surface plasmon resonance waveguide sensor by complex mode expansion and propagation method,” Opt. Quantum Electron. 29, 301–311 (1997). [CrossRef]
  21. J. Shibayama, T. Yamazaki, J. Yamauchi, and H. Nakano, “Eigenmode analysis of a light-guiding metal line loaded on a dielectric substrate using the imaginary-distance beam-propagation method,” J. Lightwave Technol. 23, 1533–1539 (2005). [CrossRef]
  22. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14, 2365–2371 (2006). [CrossRef] [PubMed]
  23. Y.-C. Lu, L. Yang, W.-P. Huang, and S.-S. Jian, “Improved full-vector finite-difference complex mode solver for optical waveguides of circular symmetry,” J. Lightwave Technol. 26, 1868–1876 (2008). [CrossRef]
  24. S. Burger, L. Zschiedrich, J. Pomplun, and F. Schmidt, “Jcmsuite: An adaptive fem solver or precise simulations in nano-optics,” in “Integrated Photonics and Nanophotonics Research and Applications,” (Optical Society of America, 2008), paper ITuE4.
  25. G. C. des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: A mode solver based on density of states formulation,” Phys. Rev. B 80, 115419 (2009). [CrossRef]
  26. COMSOL Multiphysics User Guide, Version 3.3 (COMSOL AB, Stockholm, Sweden, 2006).
  27. P. Bienstman, E. Six, M. Roelens, M. Vanwolleghem, and R. Baets, “Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers,” IEEE Photon. Technol. Lett. 14, 164–166 (2002). [CrossRef]
  28. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, 5797–5807 (2000). [CrossRef] [PubMed]
  29. M. Paulus and O. J. F. Martin, “How to tap an innocent waveguide,” Opt. Express 8, 644–648 (2001). [CrossRef] [PubMed]
  30. M. Paulus and O. J. F. Martin, “A green’s tensor approach to the modeling of nanostructure replication and characterization,” Radio Sci. 38, 8024 (2003). [CrossRef]
  31. R. J. Deri and E. Kapon, “Low-loss iii–v semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991). [CrossRef]
  32. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (John Wiley and Sons, 2002).
  33. M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE11, 75–83 (1975). [CrossRef]
  34. T. Yamamoto and M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by the finite-element method,” J. Lightwave Technol. 11, 1579–1583 (1993). [CrossRef]
  35. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14, 11128–11141 (2006). [CrossRef] [PubMed]
  36. W. Lui, C. Xu, T. Hirono, K. Yokoyama, and W. Huang, “Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations,” J. Lightwave Technol. 16, 910–914 (1998). [CrossRef]
  37. S. Lidgate, P. Sewell, and T. Benson, “Conformal mapping: limitations for waveguide bend analysis,” IEE Proc.: Sci., Meas. Technol. 149, 262–266 (2002). [CrossRef]
  38. Y. Tsuji and M. Koshiba, “Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems,” J. Lightwave Technol. 20, 463–468 (2002). [CrossRef]
  39. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express 14, 10410–10425 (2006). [CrossRef] [PubMed]
  40. W. C. Chew, J. M. Jin, and E. Michielssen, “Complex coordinate stretching as a generalized absorbing boundary condition,” Microw. Opt. Technol. Lett. 17–21 (1997).
  41. F. Teixeira and W. Chew, “Systematic derivation of anisotropic pml absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7, 371–373 (1997). [CrossRef]
  42. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974), p. 267.
  43. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006). [CrossRef]
  44. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  45. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003). [CrossRef]
  46. Q. Min, C. Chen, P. Berini, and R. Gordon, “Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications,” Opt. Express 18, 19009–19019 (2010). [CrossRef] [PubMed]
  47. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long–range surface–plasmon–polariton waveguides,” J. Appl. Phys. 98, 043109 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited