OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 18989–18996

Twisting light with micro-spheres produced by ultrashort light pulses

Martynas Beresna, Mindaugas Gecevičius, Nadezhda M. Bulgakova, and Peter G. Kazansky  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 18989-18996 (2011)
http://dx.doi.org/10.1364/OE.19.018989


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a radial polarizer based on light refraction on a transparent isotropic sphere. We demonstrate theoretically and experimentally that the circularly polarized light impinging on the sphere produces double charged optical vortex. The method is applied to generate optical vortices on a small scale using hollow micro-spheres produced by femtosecond laser in fused silica.

© 2011 OSA

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: May 13, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 12, 2011
Published: September 15, 2011

Citation
Martynas Beresna, Mindaugas Gecevičius, Nadezhda M. Bulgakova, and Peter G. Kazansky, "Twisting light with micro-spheres produced by ultrashort light pulses," Opt. Express 19, 18989-18996 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-18989


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001). [CrossRef] [PubMed]
  2. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett.88(1), 013601 (2001). [CrossRef] [PubMed]
  3. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett.103(1), 013601 (2009). [CrossRef] [PubMed]
  4. O. G. Rodríguez-Herrera, D. Lara, K. Y. Bliokh, E. A. Ostrovskaya, and C. Dainty, “Optical nanoprobing via spin-orbit interaction of light,” Phys. Rev. Lett.104(25), 253601 (2010). [CrossRef] [PubMed]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  6. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett.90(13), 133901 (2003). [CrossRef] [PubMed]
  7. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser-beam with screw dislocations in their wave-fronts,” JETP Lett.52, 429–431 (1990).
  8. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wave-front laser-beams produced with a spiral waveplate,” Opt. Commun.112(5-6), 321–327 (1994). [CrossRef]
  10. M. Beresna, P. G. Kazansky, Y. Svirko, M. Barkauskas, and R. Danielius, “High average power second harmonic generation in air,” Appl. Phys. Lett.95(12), 121502 (2009). [CrossRef]
  11. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett.103(10), 103903 (2009). [CrossRef] [PubMed]
  12. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett.96(16), 163905 (2006). [CrossRef] [PubMed]
  13. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Formation of helical beams by use of Pancharatnam-Berry phase optical elements,” Opt. Lett.27(21), 1875–1877 (2002). [CrossRef] [PubMed]
  14. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011). [CrossRef]
  15. J. A. Ferrari, W. Dultz, H. Schmitzer, and E. Frins, “Achromatic wavefront forming with space-variant polarizers: Application to phase singularities and light focusing,” Phys. Rev. A76(5), 053815 (2007). [CrossRef]
  16. R. Oldenbourg, “Analysis of edge birefringence,” Biophys. J.60(3), 629–641 (1991). [CrossRef] [PubMed]
  17. S. Kanehira, J. H. Si, J. R. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005). [CrossRef] [PubMed]
  18. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett.87(17), 171103 (2005). [CrossRef]
  19. J. Song, X. S. Wang, X. Hu, Y. Dai, J. R. Qiu, Y. Cheng, and Z. Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.92(9), 092904 (2008). [CrossRef]
  20. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express11(9), 1070–1079 (2003). [CrossRef] [PubMed]
  21. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]
  22. W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express10(14), 603–608 (2002). [PubMed]
  23. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006). [CrossRef] [PubMed]
  24. R. Graf, A. Fernandez, M. Dubov, H. J. Brueckner, B. N. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Appl. Phys. B87(1), 21–27 (2007). [CrossRef]
  25. Y. Bellouard and M.-O. Hongler, “Femtosecond-laser generation of self-organized bubble patterns in fused silica,” Opt. Express19(7), 6807–6821 (2011). [CrossRef] [PubMed]
  26. J. P. Vigouroux, J. P. Duraud, A. Le Moel, C. Le Gressus, and D. L. Griscom, “Electron trapping in amorphous SiO2 studied by charge buildup under electron bombardment,” J. Appl. Phys.57(12), 5139–5144 (1985). [CrossRef]
  27. P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, and M. Perdrix, “Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals,” Phys. Rev. B55(9), 5799–5810 (1997). [CrossRef]
  28. Y. D. Glinka, S.-H. Lin, L.-P. Hwang, Y.-T. Chen, and N. H. Tolk, “Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials,” Phys. Rev. B64(8), 085421 (2001). [CrossRef]
  29. N. O. Young, J. S. Goldstein, and M. J. Block, “The motion of bubbles in a vertical temperature gradient,” J. Fluid Mech.6(03), 350–356 (1959). [CrossRef]
  30. S. C. Hardy, “The motion of bubbles in a vertical temperature gradient,” J. Colloid Interface Sci.69(1), 157–162 (1979). [CrossRef]
  31. P. Török, “Imaging of small birefringent objects by polarised light conventional and confocal microscopes,” Opt. Commun.181(1-3), 7–18 (2000). [CrossRef]
  32. E. Brasselet, M. Malinauskas, A. Zukauskas, and S. Juodkazis, “Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum,” Appl. Phys. Lett.97(21), 211108 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited