OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19015–19026

Dielectric nanostructures for broadband light trapping in organic solar cells

Aaswath Raman, Zongfu Yu, and Shanhui Fan  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19015-19026 (2011)
http://dx.doi.org/10.1364/OE.19.019015


View Full Text Article

Enhanced HTML    Acrobat PDF (2147 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Solar Energy

History
Original Manuscript: May 26, 2011
Revised Manuscript: June 29, 2011
Manuscript Accepted: July 1, 2011
Published: September 15, 2011

Citation
Aaswath Raman, Zongfu Yu, and Shanhui Fan, "Dielectric nanostructures for broadband light trapping in organic solar cells," Opt. Express 19, 19015-19026 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res. 19, 1924–1945 (2004). [CrossRef]
  2. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today 10, 28–33 (2007). [CrossRef]
  3. D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006). [CrossRef]
  4. S. H. Park, A. Roy, S. Beaupr, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–302 (2009). [CrossRef]
  5. J. Kim, S. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006). [CrossRef]
  6. A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, “High performance polythiophene/fullerene bulk-heterojunction solar cell with a tiox hole blocking layer,” Appl. Phys. Lett. 90, 163517 (2007). [CrossRef]
  7. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501 (2007). [CrossRef]
  8. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes–architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004). [CrossRef]
  9. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Func. Mater. 18, 3956–3963 (2008). [CrossRef]
  10. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009). [CrossRef] [PubMed]
  11. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746 (2009). [CrossRef] [PubMed]
  12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  13. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010). [CrossRef] [PubMed]
  14. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14, 3001–3008 (1997). [CrossRef]
  15. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. 107, 17491–17496 (2010). [CrossRef] [PubMed]
  16. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008). [CrossRef]
  17. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106, 073109 (2009). [CrossRef]
  18. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010). [CrossRef]
  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999). [CrossRef]
  20. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). [CrossRef]
  21. C. Brabec, V. Dyakonov, and U. Scherf, Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies (Wiley-VCH, 2008). [CrossRef]
  22. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express 18, 5691–5706 (2010). [CrossRef] [PubMed]
  23. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, “Transition metal oxides as the buffer layer for polymer photovoltaic cells,” Appl. Phys. Lett. 88, 073508 (2006). [CrossRef]
  24. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proc. Natl. Acad. Sci. U.S.A. 105, 2783–2787 (2008). [CrossRef]
  25. H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan, and Y. Cui, “Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes,” J. Am. Chem. Soc. 133, 27–29 (2011). [CrossRef]
  26. K.-Y. Yang, K.-M. Yoon, S. Lim, and H. Lee, “Direct indium tin oxide patterning using thermal nanoimprint lithography for highly efficient optoelectronic devices,” J. Vac. Sci. Technol. B 27, 2786–2789 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited