OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19027–19041

Complex k band diagrams of 3D metamaterial/photonic crystals.

Chris Fietz, Yaroslav Urzhumov, and Gennady Shvets  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19027-19041 (2011)
http://dx.doi.org/10.1364/OE.19.019027


View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A finite element method (FEM) for solving a complex valued k(ω) vs. ω dispersion curve of a 3D metamaterial/photonic crystal system is presented. This 3D method is a generalization of a previously reported 2D eigenvalue method [Opt. Express 15, 9681 (2007)]. This method is particularly convenient for analyzing periodic systems containing dispersive (e.g., plasmonic) materials, for computing isofrequency surfaces in the k-space, and for calculating the decay length of the evanescent waves. Two specific examples are considered: a photonic crystal comprised of dielectric spheres and a plasmonic fishnet structure. Hybridization and avoided crossings between Mie resonances and propagating modes are numerically demonstrated. Negative index propagation of four electromagnetic modes distinguished by their symmetry is predicted for the plasmonic fishnets. By calculating the isofrequency contours, we also demonstrate that the fishnet structure is a hyperbolic medium.

© 2011 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Metamaterials

History
Original Manuscript: May 31, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 14, 2011
Published: September 15, 2011

Citation
Chris Fietz, Yaroslav Urzhumov, and Gennady Shvets, "Complex k band diagrams of 3D metamaterial/photonic crystals.," Opt. Express 19, 19027-19041 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light , 2nd ed. (Princeton University Press, 2008).
  2. K. Sakoda, Optical Properties of Photonic Crystals , 2nd ed. (Springer, 2004).
  3. G. Shvets and Y. A. Urzhumov, “Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances,” Phys. Rev. Lett. 93, 243902 (2004).
  4. E. D. Palik, Handbook of Optical Constants of Solids (Acedemic Press, 1985), vol. 1. [CrossRef]
  5. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 613, 4922 (2005).
  6. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000). [CrossRef]
  7. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E 69, 016609 (2004). [CrossRef]
  8. T. Suzuki and P. L. Yu, “Tunneling in photonic band strucures,” J. Opt. Soc. Am. B 12, 804 (1995). [CrossRef]
  9. E. Istrate, A. A. Green, and E. H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122 (2005). [CrossRef]
  10. A. J. Ward, J. B. Pendry, and W. J. Stewart, “Photonic dispersion surfaces,” J. Phys.: Condens. Matter 7, 2217–2224 (1995).
  11. Z. Y. Li and L. L. Lin, “Photonic band structure solved by a plane-wave–based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  12. M. Davanco, Y. Urzhumov, and G. Shvets, “The complex bloch bands of a 2d plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007). [CrossRef]
  13. C. Engström, C. Hafner, and K. Schmidt, “Computations of lossy bloch waves in two-dimensional photonic crystals,” J. Comput. Theor. Nanosci. 6, 1–9 (2009). [CrossRef] [PubMed]
  14. X. Zhang, M. Davanco, Y. Urzhumov, and G. Shvets, “A subwavelength near-infrared negative index material,” Appl. Phys. Lett. 94, 131107 (2009). [CrossRef]
  15. X. Zhang, M. Davanco, K. Miller, T. W. J. C. Wu, C. Fietz, D. Korobkin, X. Li, G. Shvets, and S. R. Forrest, “Interferometric characterization of a subwavelength near-infrared negative index metamaterial,” Opt. Express 18, 17788–17795 (2010). [CrossRef]
  16. C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Phys. B 405, 2930–2934 (2010). [CrossRef] [PubMed]
  17. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B 27, 1576–1582 (2010). [CrossRef]
  18. C. Fietz and G. Shvets, “Homogenization theory for simple metamaterials modeled as one-dimensional arrays of thin polarizable sheets,” Phys. Rev. B 82, 205128 (2010). [CrossRef]
  19. A. Pors, I. Tsukerman, and S. I. Bozhevolnyi, “Effective constitutive parameters of plasmonic metamaterials: a rigorous approach,” arXiv:1104.2972v1(2011). [CrossRef]
  20. Both .m and .mph files for the sphere photonic crystal model can be acquired by contacting Chris Fietz at fietz.chris@gmail.com.
  21. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, and G. Bartal, “Three-dimensional optical metamaterial with a negative refractive index,” Science 455, 376–380 (2008).
  22. W. B. J. Zimmerman, Process Modelling and Simulation with Finite Element Methods (World Scientific, 2004).
  23. J. Jin, The Finite Element Method in Electromagnetics , 2nd ed. (John Wiley & Sons, Inc., 2002).
  24. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers 3rd ed. (Cambridge University Press, 1996).
  25. F. Tisseur and K. Meerbergen, “The quadratic eigenvalue problem,” SIAM Review 43, 235–286 (2001).
  26. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003). [CrossRef]
  27. R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers,” Radio Sci. 42, RS6S21 (2007). [CrossRef]
  28. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials 1, 62–80 (2007). [CrossRef]
  29. A. Alú, “First-principle homogenization theory for periodic metamaterial arrays,” arXiv:1012.1351v2(2011). [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1998).
  31. J. M. Siqueiros, R. Machorro, and L. E. Regalado, “Determination of the optical constants of MgF2 and ZnS from spectrophotometric measurements and the classical oscillator method,” Appl. Opt. 27, 2549–2553 (1988). [CrossRef]
  32. P. Halevi, Spatial Dispersion in Solids and Plasmas (Elsevier Science Publishers, 1992). [CrossRef] [PubMed]
  33. M. A. Shapiro, G. Shvets, J. R. Sirigiri, and R. J. Temkin, “Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves,” Opt. Lett. 31, 2051 (2006).
  34. L. Jelinek, R. Marques, and J. Machac, “Fishnet metamaterials - rules for refraction and limits of homogenization,” Opt. Express 18, 17940–17949 (2010). [CrossRef] [PubMed]
  35. M. Navarro-Ca, M. Beruete, M. Sorolla, and I. Campillo, “Negative refraction in a prism made of stacked subwavelength hole arrays,” Opt. Express 16, 560–566 (2008). [CrossRef] [PubMed]
  36. Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146, 208–220 (2008). [CrossRef]
  37. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  38. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, 1960).
  39. MUltifrontal Massively Parallel Solver (MUMPS 4.9.2) User’s guide (Lyon, 2009).
  40. R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide, Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia).
  41. K. J. Maschhoff and D. C. Soerensen, “PARPACK: An efficient portable large scale eigenvalue package for distributed memory parallel architectures,” Lect. Notes Comp. Sci. 1184, 478–486 (1996). [PubMed]
  42. S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc users manual,” Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010). [CrossRef]
  43. J. E. Roman, E. Romero, and A. Tomas, “SLEPc users manual,” Tech. Rep. DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited