OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19050–19060

X-ray optics simulation using Gaussian superposition technique

Mourad Idir, Moisés Cywiak, Arquímedes Morales, and Mohammed H. Modi  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19050-19060 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1754 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.

© 2011 OSA

OCIS Codes
(340.0340) X-ray optics : X-ray optics
(340.6720) X-ray optics : Synchrotron radiation
(340.7470) X-ray optics : X-ray mirrors

ToC Category:
X-ray Optics

Original Manuscript: June 23, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 3, 2011
Published: September 15, 2011

Mourad Idir, Moisés Cywiak, Arquímedes Morales, and Mohammed H. Modi, "X-ray optics simulation using Gaussian superposition technique," Opt. Express 19, 19050-19060 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lai and F. Cerrina, “SHADOW: A synchrotron radiation ray tracing program,” Nucl. Instrum. Methods Phys. Res. A 246(1-3), 337–341 (1986). [CrossRef]
  2. T. Moreno and M. Idir, “SPOTX a ray tracing software for X-ray optics,” J. Phys. (France) 11, 527–531 (2001).
  3. T. Yamada, N. Kawahara, M. Doi, T. Shoji, N. Tsuruoka, and H. Iwasaki, “A new ray-tracing program RIGTRACE for X-ray optical systems,” J. Synchrotron Radiat. 8(3), 1047–1050 (2001). [CrossRef] [PubMed]
  4. F. Schafers, “The BESSY ray trace programm: Ray,” Modern Developments in X-Ray and Neutron Optics, A. Erko, M. Idir, T. Krist, and A. G. Michette, eds. (Springer Science2008), p. 9.
  5. M. Bowler, J. Bahrdt, and O. Chubar, “Wavefront propagation,” Modern Developments in X-Ray and Neutron Optics (Springer Series in Optical Sciences, 2008), pp. 69–90.
  6. K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa, and Y. Mori, “Wave-optical evaluation of interference fringes and wavefront phase in a hard-x-ray beam totally reflected by mirror optics,” Appl. Opt. 44(32), 6927–6932 (2005). [CrossRef] [PubMed]
  7. C. M. Kewish, L. Assoufid, A. T. Macrander, and J. Qian, “Wave-optical simulation of hard-x-ray nanofocusing by precisely figured elliptical mirrors,” Appl. Opt. 46(11), 2010–2021 (2007). [CrossRef] [PubMed]
  8. M. H. Modi, M. Idir, R. Garrett, I. Gentle, K. Nugent, S. Wilkins, and M. Idir, “Shape error analysis for reflective nano focusing optics,”, SRI 2009,” AIP Conf. Proc. 1234, 681–684 (2010).
  9. M. Cywiak, M. Servín, and F. Mendoza-Santoyo, “Wave-front propagation by Gaussian superposition,” Opt. Comm.195(5–6), 351–359, (2001). [CrossRef]
  10. M. Cywiak, A. Morales, M. Servín, and R. Gómez-Medina, “A technique for calculating the amplitude distribution of propagated fields by Gaussian sampling,” Opt. Express 18(18), 19141–19155 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19141 . [CrossRef] [PubMed]
  11. M. Cywiak, A. Morales, J. M. Flores, and M. Servín, “Fresnel-Gaussian shape invariant for optical ray tracing,” Opt. Express 17(13), 10564–10572 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-13-10564 . [CrossRef] [PubMed]
  12. M. Cywiak, M. Servín, and A. Morales, “Diffractive and geometric optical systems characterization with the Fresnel Gaussian shape invariant,” Opt. Express 19(3), 1892–1904 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-3-1892 . [CrossRef] [PubMed]
  13. I. A. Vartanyants, A. P. Mancuso, A. Singer, O. M. Yefanov, and J. Gulden, “Coherence measurements and coherent diffractive imaging at FLASH,” J. Phys. At. Mol. Opt. Phys. 43(19), 194016 (2010). [CrossRef]
  14. F. Livet, “Diffraction with a coherent X-ray beam: dynamics and imaging,” Acta Crystallogr. A 63(2), 87–107 (2007). [CrossRef] [PubMed]
  15. W. Leitenberger, S. M. Kuznetsov, and A. Snigirev, “Interferometric measurements with hard X-rays using a double slit,” Opt. Commun. 191(1–2), 91–96 (2001). [CrossRef]
  16. T. Ditmire, E. T. Gumbrell, R. A. Smith, J. W. Tisch, D. D. Meyerhofer, and M. H. Hutchinson, “Spatial coherence measurement of soft X-ray radiation produced by high order harmonic generation,” Phys. Rev. Lett. 77(23), 4756–4759 (1996). [CrossRef] [PubMed]
  17. Y. Liu, Y. Wang, M. A. Larotonda, B. M. Luther, J. J. Rocca, and D. T. Attwood, “Spatial coherence measurements of a 13.2 nm transient nickel-like cadmium soft x-ray laser pumped at grazing incidence,” Opt. Express 14(26), 12872–12879 (2006), http://www.opticsinfobase.org/abstract.cfm?id=121404 . [CrossRef] [PubMed]
  18. M. Howells, C. Jacobsen, and T. Warwick, “Principles and applications of zone plate X-ray microscopes,” in Science of Miscrocopy, Eds. Peter W. Hawkes & John C.H. Spence, XXXVI, (Springer, 2007).
  19. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature 435(7046), 1210–1213 (2005). [CrossRef] [PubMed]
  20. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-20-17669 . [CrossRef] [PubMed]
  21. G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B. Heymann, W. G. Müller, and J. G. McNally, “Three-dimensional cellular ultrastructure resolved by X-ray microscopy,” Nat. Methods 7(12), 985–987 (2010). [CrossRef] [PubMed]
  22. K. Iizuka, Engineering Optics, (Springer Series in Optical Sciences, 1986), Ch. 4.
  23. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996). [CrossRef]
  24. T. Tomie, “The birth of the X-ray refractive lens,” Spectrochim. Acta, B At. Spectrosc. 65(3), 192–198 (2010). [CrossRef]
  25. A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler, “Focusing high-energy x rays by compound refractive lenses,” Appl. Opt. 37(4), 653–662 (1998). [CrossRef] [PubMed]
  26. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101(9), 090801 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited