OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19067–19077

Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model

Ji Cang and Xu Liu  »View Author Affiliations


Optics Express, Vol. 19, Issue 20, pp. 19067-19077 (2011)
http://dx.doi.org/10.1364/OE.19.019067


View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links.

© 2011 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 30, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: September 2, 2011
Published: September 15, 2011

Citation
Ji Cang and Xu Liu, "Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model," Opt. Express 19, 19067-19077 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-20-19067


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Majumdar, “Free-space laser communication performance in the atmospheric channel,” J. Opt. Fiber Commun. Res.2(4), 345–396 (2005). [CrossRef]
  2. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun.3(8), 1402–1409 (2009). [CrossRef]
  3. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average capacity of optical wireless communication systems over atmospheric turbulence channels,” J. Lightwave Technol.27(8), 974–979 (2009). [CrossRef]
  4. L. C. Andrews and R. L. Phillips, “Impact of scintillation on laser communication systems: recent advances in modeling,” Proc. SPIE4489, 23–34 (2002). [CrossRef]
  5. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 2005).
  6. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng.43(2), 330–341 (2004). [CrossRef]
  7. C. Y. Chen, H. M. Yang, X. Feng, and H. Wang, “Optimization criterion for initial coherence degree of lasers in free-space optical links through atmospheric turbulence,” Opt. Lett.34(4), 419–421 (2009). [CrossRef] [PubMed]
  8. D. K. Borah and D. G. Voelz, “Spatially partially coherent beam parameter optimization for free space optical communications,” Opt. Express18(20), 20746–20758 (2010). [CrossRef] [PubMed]
  9. G. Wu, H. Guo, S. Yu, and B. Luo, “Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence,” Opt. Lett.35(5), 715–717 (2010). [CrossRef] [PubMed]
  10. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (Trans. NOAA by Israel Program for Scientific Translations, 1971).
  11. D. T. Kyrazis, J. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE2120, 43–55 (1994). [CrossRef]
  12. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical Propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE2471, 181–196 (1995). [CrossRef]
  13. M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE3126, 113–123 (1997). [CrossRef]
  14. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model,” Appl. Opt.47(34), 6385–6391 (2008). [CrossRef] [PubMed]
  15. N. S. Kopeika, A. Zilberman, and E. Golbraikh, “Generalized atmospheric turbulence: implications regarding imaging and communications,” Proc. SPIE7588, 758808 (2010). [CrossRef]
  16. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE6551, 65510E (2007). [CrossRef]
  17. L. Y. Cui, B. D. Xue, X. G. Cao, J. K. Dong, and J. N. Wang, “Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence,” Opt. Express18(20), 21269–21283 (2010). [CrossRef] [PubMed]
  18. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for laser beam propagation through non Kolmogorov turbulence,” Proc. SPIE6457, 64570T (2007). [CrossRef]
  19. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Scintillation index of optical plane wave propagating through non Kolmogorov moderate-strong turbulence,” Proc. SPIE6747, 67470B (2007). [CrossRef]
  20. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free space optical system performance for a Gaussian beam propagating through non-Kolmogorov weak turbulence,” IEEE Trans. Antenn. Propag.57(6), 1783–1788 (2009). [CrossRef]
  21. L. Tan, W. Du, J. Ma, S. Yu, and Q. Han, “Log-amplitude variance for a Gaussian-beam wave propagating through non-Kolmogorov turbulence,” Opt. Express18(2), 451–462 (2010). [CrossRef] [PubMed]
  22. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Some limitations on optical communication reliability through Kolmogorov and non-Kolmogorov turbulence,” Opt. Commun.283(7), 1229–1235 (2010). [CrossRef]
  23. B. D. Xue, L. Y. Cui, W. F. Xue, X. Z. Bai, and F. G. Zhou, “Theoretical expressions of the angle-of-arrival variance for optical waves propagating through non-Kolmogorov turbulence,” Opt. Express19(9), 8433–8443 (2011). [CrossRef] [PubMed]
  24. B. D. Xue, L. Y. Cui, W. F. Xue, X. Z. Bai, and F. G. Zhou, “Generalized modified atmospheric spectral model for optical wave propagating through non-Kolmogorov turbulence,” J. Opt. Soc. Am. A28(5), 912–916 (2011). [CrossRef] [PubMed]
  25. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Effects of the refractive index spectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am. A11(10), 2719–2726 (1994). [CrossRef]
  26. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited