OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19093–19103

Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates

Go Obara, Naoki Maeda, Tomoya Miyanishi, Mitsuhiro Terakawa, Nikolay N. Nedyalkov, and Minoru Obara  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19093-19103 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1638 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present experimental and theoretical results on plasmonic control of far-field interference for regular ripple formation on semiconductor and metal. Experimental observation of interference ripple pattern on Si substrate originating from the gold nanosphere irradiated by femtosecond laser is presented. Gold nanosphere is found to be an origin for ripple formation. Arbitrary intensity ripple patterns are theoretically controllable by depositing desired plasmonic and Mie scattering far-field pattern generators. The plasmonic far-field generation is demonstrated not only by metallic nanostructures but also by the controlled surface structures such as ridge and trench structures on various material substrates.

© 2011 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(350.3390) Other areas of optics : Laser materials processing
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 21, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 18, 2011
Published: September 15, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Go Obara, Naoki Maeda, Tomoya Miyanishi, Mitsuhiro Terakawa, Nikolay N. Nedyalkov, and Minoru Obara, "Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates," Opt. Express 19, 19093-19103 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011). [CrossRef] [PubMed]
  4. S. M. Huang, M. H. Hong, B. S. Luk’yanchuk, Y. W. Zheng, W. D. Song, Y. F. Lu, and T. C. Chong, “Pulsed laser-assisted surface structuring with optical near-field enhanced effects,” J. Appl. Phys. 92(5), 2495–2500 (2002). [CrossRef]
  5. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006). [CrossRef]
  6. H. Takada and M. Obara, “Fabrication of hexagonally arrayed nanoholes using femtosecond laser pulse ablation with template of subwavelength polystyrene particle array,” Jpn. J. Appl. Phys. 44, 7993–7997 (2005). [CrossRef]
  7. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys., A Mater. Sci. Process. 85(2), 163–168 (2006). [CrossRef]
  8. N. N. Nedyalkov, T. Sakai, T. Miyanishi, and M. Obara, “Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring,” J. Phys. D Appl. Phys. 39(23), 5037–5042 (2006). [CrossRef]
  9. T. Sakai, Y. Tanaka, Y. Nishizawa, M. Terakawa, and M. Obara, “Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 99(1), 39–46 (2010). [CrossRef]
  10. Y. Tanaka, G. Obara, A. Zenidaka, M. Terakawa, and M. Obara, “Femtosecond laser near-field nano-ablation patterning using Mie resonance high dielectric constant particle with small size parameter,” Appl. Phys. Lett. 96(26), 261103 (2010). [CrossRef]
  11. G. Obara, Y. Tanaka, T. Miyanishi, and M. Obara, “Uniform plasmonic near-field nanopatterning by backward irradiation of femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 102(3), 551–557 (2011). [CrossRef]
  12. Y. Tanaka, G. Obara, A. Zenidaka, N. N. Nedyalkov, M. Terakawa, and M. Obara, “Near-field interaction of two-dimensional high-permittivity spherical particle arrays on substrate in the Mie resonance scattering domain,” Opt. Express 18(26), 27226–27237 (2010). [CrossRef] [PubMed]
  13. S. Imamova, A. Dikovska, N. Nedyalkov, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwinski, and M. Obara, “Laser nanostructuring of thin Au films for application in surface enhanced Raman spectroscopy,” J. Optoelectron. Adv. Mater. 12, 500–504 (2010).
  14. T. Miyanishi, T. Sakai, N. N. Nedyalkov, and M. Obara, “Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation,” Appl. Phys., A Mater. Sci. Process. 96(4), 843–850 (2009). [CrossRef]
  15. Y. Tanaka, N. N. Nedyalkov, and M. Obara, “Enhanced near-field distribution inside substrates mediated with gold particle: optical vortex and bifurcation,” Appl. Phys., A Mater. Sci. Process. 97(1), 91–98 (2009). [CrossRef]
  16. G. Mie, “Beiträ ge zur Optik trü ber Medien, speziell kolloidaler Metallö sungen,” Ann. Phys. 330(3), 377–445 (1908). [CrossRef]
  17. A. M. Ozkan, A. P. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, “Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters,” Appl. Phys. Lett. 75(23), 3716–3718 (1999). [CrossRef]
  18. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462–4464 (2003). [CrossRef]
  19. T. Tomita, K. Kinoshita, S. Matsuo, and S. Hashimoto, “Effect of surface roughening on femtosecond laser-induced ripple structures,” Appl. Phys. Lett. 90(15), 153115 (2007). [CrossRef]
  20. G. Miyaji and K. Miyazaki, “Ultrafast dynamics of periodic nanostructure formation on diamondlike carbon films irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 89(19), 191902 (2006). [CrossRef]
  21. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16(20), 16265–16271 (2008). [CrossRef] [PubMed]
  22. G. Miyaji and K. Miyazaki, “Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses,” Appl. Phys. Lett. 91(12), 123102 (2007). [CrossRef]
  23. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO,” J. Appl. Phys. 105(3), 034908 (2009). [CrossRef]
  24. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond –laser pulse,” J. Appl. Phys. 106(10), 104910 (2009). [CrossRef]
  25. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism of self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B 79(3), 033409 (2009). [CrossRef]
  26. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3(12), 4062–4070 (2009). [CrossRef] [PubMed]
  27. J. Sipe, J. Young, J. Preston, and H. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983). [CrossRef]
  28. F. Jeff, “Young, J. F. Preston, H. M. van Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass,” Phys. Rev. B 27, 1155–1172 (1983).
  29. J. Young, J. Sipe, and H. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Phys. Rev. B 30, 2001–2015 (1984). [CrossRef]
  30. H. Kumagai, M. Ezaki, K. Toyoda, and M. Obara, “Periodic submicrometer dot structure on n-GaAs substrates fabricated by laser-induced surface electromagnetic wave etching,” J. Appl. Phys. 73(4), 1971–1974 (1993). [CrossRef]
  31. M. Ezaki, H. Kumagai, K. Toyoda, and M. Obara, “Surface modification of III-V compound semiconductors using surface electromagnetic wave etching induced by ultraviolet lasers,” IEEE J. Sel. Top. Quantum Electron. 1(3), 841–847 (1995). [CrossRef]
  32. A. Anderson, F. Lücking, T. Prikoszovits, M. Hofer, Z. Cheng, C. C. Neacsu, M. Scharrer, S. Rammler, P. S. J. Russell, G. Tempea, and A. Assion, “Multi-mJ carrier envelope phase stabilized few-cycle pulses generated by a tabletop laser system,” Appl. Phys. B 103, 531–536 (2011). [CrossRef]
  33. L. Bergé, C.-L. Soulez, C. Köhler, and S. Skupin, “Role of the carrier-envelop phase in laser filamentation,” Appl. Phys. B 103(3), 563–570 (2011). [CrossRef]
  34. H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101(1-2), 273–282 (2010). [CrossRef]
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  37. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter 34(10), 7018–7026 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited