OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 20 — Sep. 26, 2011
  • pp: 19114–19121

Tunable narrowband THz pulse generation in scalable large area photoconductive antennas

Johannes Krause, Martin Wagner, Stephan Winnerl, Manfred Helm, and Dominik Stehr  »View Author Affiliations

Optics Express, Vol. 19, Issue 20, pp. 19114-19121 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1654 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The generation and characterization of narrowband THz pulses by means of chirped pulse difference frequency generation in Auston-switch type photoconductive antennas is reported. Using optical pulses with energies in the range from 1 nJ to 1µJ, we generate THz pulses with up to 50 pJ in energy and electric field strengths on the order of 1 kV/cm. Two emitter concepts are investigated and circumvention of the fast saturation for small area excitation by scaling of the THz emitter is demonstrated.

© 2011 OSA

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Original Manuscript: August 8, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: September 2, 2011
Published: September 16, 2011

Johannes Krause, Martin Wagner, Stephan Winnerl, Manfred Helm, and Dominik Stehr, "Tunable narrowband THz pulse generation in scalable large area photoconductive antennas," Opt. Express 19, 19114-19121 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, “Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas,” Appl. Phys. Lett. 64(2), 137–139 (1994). [CrossRef]
  2. A. S. Weling and D. H. Auston, “Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space,” J. Opt. Soc. Am. B 13(12), 2783–2791 (1996). [CrossRef]
  3. J. R. Danielson, A. D. Jameson, J. L. Tomaino, H. Hui, J. D. Wetzel, Y.-S. Lee, and K. L. Vodopyanov, “Intense narrow band terahertz generation via type-II difference-frequency generation in ZnTe using chirped optical pulses,” J. Appl. Phys. 104(3), 033111 (2008). [CrossRef]
  4. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  5. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009). [CrossRef] [PubMed]
  6. W. C. Hurlbut, B. J. Norton, N. Amer, and Y.-S. Lee, “Manipulation of terahertz waveforms in nonlinear optical crystals by shaped optical pulses,” J. Opt. Soc. Am. B 23(1), 90–93 (2006). [CrossRef]
  7. Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Sel. Top. Quantum Electron. 2(3), 709–719 (1996). [CrossRef]
  8. J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. 81(1), 13–15 (2002). [CrossRef]
  9. T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29(15), 1802–1804 (2004). [CrossRef] [PubMed]
  10. A. G. Stepanov, J. Hebling, and J. Kuhl, “Generation, tuning, and shaping of narrow-band, picosecond THz pulses by two-beam excitation,” Opt. Express 12(19), 4650–4658 (2004). [CrossRef] [PubMed]
  11. C. D’Amico, M. Tondusson, J. Degert, and E. Freysz, “Tuning and focusing THz pulses by shaping the pump laser beam profile in a nonlinear crystal,” Opt. Express 17(2), 592–597 (2009). [CrossRef] [PubMed]
  12. S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulse generation,” J. Opt. Soc. Am. B 27(5), 1044–1050 (2010). [CrossRef]
  13. M. Yamaguchi and J. Das, “Terahertz wave generation in nitrogen gas using shaped optical pulses,” J. Opt. Soc. Am. B 26(9), A90–A94 (2009). [CrossRef]
  14. K. K. Kohli, A. Vaupel, S. Chatterjee, and W. W. Rühle, “Adaptive shaping of THz-pulses generated in <110> ZnTe crystals,” J. Opt. Soc. Am. B 26(9), A74–A78 (2009). [CrossRef]
  15. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express 11(20), 2486–2496 (2003). [CrossRef] [PubMed]
  16. Y.-S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 78(23), 3583–3585 (2001). [CrossRef]
  17. Y.-S. Lee, N. Amer, and W. C. Hurlbut, “Terahertz pulse shaping via optical rectification in poled lithium niobate,” Appl. Phys. Lett. 82(2), 170–172 (2003). [CrossRef]
  18. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011). [CrossRef]
  19. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE J. Sel. Top. Quantum Electron. 14(2), 449–457 (2008). [CrossRef]
  20. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005). [CrossRef]
  21. Z. G. Lu, P. Campbell, and X.-C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Appl. Phys. Lett. 71(5), 593–595 (1997). [CrossRef]
  22. High-resolution transmission molecular absorption database (HITRAN), http://cfa-www.harvard.edu/HITRAN/ .
  23. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited